Журнал неорганической химии, 2023, T. 68, № 8, стр. 1119-1125

Оптические свойства фторцирконатных стекол, легированных ионами хрома

С. Х. Батыгов a, М. Н. Бреховских b*, Л. В. Моисеева a, В. В. Винокурова b, Н. Ю. Кирикова c, В. А. Кондратюк c, В. Н. Махов c

a Институт общей физики им. А.М. Прохорова РАН
119991 Москва, ул. Вавилова, 38, Россия

b Институт общей и неорганической химии им. Н.С. Курнакова РАН
119991 Москва, Ленинский пр-т, 31, Россия

c Физический институт им. П.Н. Лебедева РАН
119991 Москва, Ленинский пр-т, 53, Россия

* E-mail: mbrekh@igic.ras.ru

Поступила в редакцию 17.04.2023
После доработки 26.04.2023
Принята к публикации 03.05.2023

Аннотация

Синтезированы фторидные стекла системы ZrF4–BaF2–LaF3–AlF3–NaF (ZBLAN) с частичной степенью замещения фтора хлором, легированные трифторидом хрома. Полученные спектральные данные подтверждают, что ионы хрома входят в структуру стекол и демонстрируют широкополосную люминесценцию, обусловленную переходом 4T24A2 в ионе Cr3+. Наблюдаемый длинноволновый сдвиг полосы широкополосной люминесценции и полос поглощения Cr3+ во фторид-хлоридном стекле по сравнению с фторидным стеклом соответствует ожидаемому поведению спектров люминесценции и поглощения Cr3+ при замещении ионов фтора ионами хлора, которое должно приводить к ослаблению силы кристаллического поля, воздействующего на ионы Cr3+. При комнатной температуре люминесценция ионов Cr3+ при 888 и 908 нм сильно потушена вследствие термостимулированного безызлучательного перехода из возбужденного состояния 4T2 в основное состояние 4A2.

Ключевые слова: фторцирконатные стекла, ион хрома, люминесценция, оптическое пропускание, температурное тушение

Список литературы

  1. Drexhage M.G., Moynihan C.T. // Sci. Am. 1988. V. 259. P. 110.

  2. Boulard B. // Functionalized Inorganic Fluorides. Ch. 11. Jonn Wiley & Sons. Ltd. UK, 2010. P. 538.

  3. Lucas J., Smektala F., Adam J.-L. // J. Fluorine Chem. 2002. V. 114. P. 113. https://doi.org/10.1016/S0022-1139(02)00016-7

  4. Poulain M., Cozic S., Adam J.-L. in Mid-Infrared Fiber Photonics Glass Materials, Fiber Fabrication and Processing, Laser and Nonlinear Sources, Woodhead Publishing Series in Electronic and Optical Materials, 2022. P. 47.

  5. Батыгов С.Х., Бреховских М.Н., Моисеева Л.В. и др. // Неорган. материалы. 2019. Т. 55. № 11. С. 1254. https://doi.org/10.1134/S0002337X19110022

  6. Brekhovskikh M.N., Batygov S.Kh., Moiseeva L.V. et al. // Phys. Status Solidi B. 2020. V. 257. P. 1900457. https://doi.org/10.1002/pssb.201900457

  7. Батыгов С.Х., Бреховских М.Н., Моисеева Л.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 10. С. 1491. https://doi.org/10.31857/S0044457X21100020

  8. Бреховских М.Н., Кирикова Н.Ю., Моисеева Л.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 1022. https://doi.org/10.31857/S0044457X22070042

  9. Lachheb R., Herrmann A., Damak K. et al. // J. Lumin. 2017. V. 186. P. 152. https://doi.org/10.1016/j.jlumin.2017.02.030

  10. Fu W., Zhang C., Li Z. et al. Ceram. Int. 2020. V. 46. P. 15054. https://doi.org/10.1016/j.ceramint.2020.03.038

  11. Marciniak L., Bednarkiewicz A., Kowalska D. et al. // J. Mater. Chem. C. 2016. P. 5559. https://doi.org/10.1039/C6TC01484D

  12. Marciniak L., Bednarkiewicz A., Strek W. // Sens. Actuators, B: Chem. 2017. V. 238. P. 381. https://doi.org/10.1016/j.snb.2016.07.080

  13. Marciniak L., Bednarkiewicz A. // Sens. Actuators, B: Chem. 2017. V. 243. P. 388. https://doi.org/10.1016/j.snb.2016.07.080

  14. Chen D., Liu S., Xu W. et al. // J. Mater. Chem. C. 2017. V. 5 P. 11769. https://doi.org/10.1039/C7TC04410K

  15. Kowalska K., Kuwik M., Polak J. et al. // J. Lumin. 2022. V. 245. P. 118775. https://doi.org/10.1016/j.jlumin.2022.118775

  16. Ramadevudu G., Chary M.N., Shareefuddin M. // Mater. Chem. Phys. 2017. V. 186. P. 382. https://doi.org/10.1016/j.matchemphys.2016.11.009

  17. Maalej O., Taktak O., Boulard B. et al. // J. Phys. Chem. B. 2016. V. 120. P. 7538. https://doi.org/10.1021/acs.jpcb.6b03230

  18. Taktak O., Souissi H., Souha K. // J. Lumin. 2015. V. 161. P. 368. https://doi.org/10.1016/j.jlumin.2015.01.047

  19. Хайдуков Н.М., Никонов К.С., Бреховских М.Н. и др. // Неорган. материалы. 2022. Т. 58. № 7. С. 778. https://doi.org/10.31857/S0002337X22070107

  20. Tanabe Y., Sugano S. // J. Phys. Soc. Jpn. 1954. V. 9. P. 776. https://doi.org/10.1143/JPSJ.9.766

  21. Adachi S. ECS J. Solid State Sci. Technol. 2019. V. 8. R 164.https://doi.org/10.1149/2.0061912jss

  22. Bunuel M.A., Alcalá R., Cases R. // Solid State Commun. 1998. V. 107. P. 491. https://doi.org/10.1016/S0038-1098(98)00248-8

  23. Fano U. // Phys. Rev. 1961. V. 124. P. 1866. https://doi.org/10.1103/PhysRev.124.1866

  24. Batygov S., Brekhovskikh M., Moiseeva L. et al. // J. Non-Cryst. Solids. 2018. V. 480. P. 57. https://doi.org/10.1016/j.jnoncrysol.2017.06.029

  25. Henderson B., Imbush G.F. // Opt. Spectrosc. Inorg. Solids. Oxford: Clarendon Press, 2006. 645 p.

  26. Adachi S. // ECS J. Solid State Sci. Technol. 2021. V. 10. P. 026001. https://doi.org/10.1149/2162-8777/abdc01

  27. Adachi S. // ECS J. Solid State Sci. Technol. 2021. V. 10. P. 036001. https://doi.org/10.1149/2162-8777/abdfb7

Дополнительные материалы отсутствуют.