Прикладная биохимия и микробиология, 2023, T. 59, № 6, стр. 589-598

Характеристика штаммов группы Bacillus cereus complex, выделенных из вечной мерзлоты в якутии, для оценки микробиологических рисков при изменении климата

Ю. О. Гончарова 1*, В. В. Евсеева 1, Р. И. Миронова 1, К. В. Хлопова 1, А. Г. Богун 1, А. А. Сизова 1, В. И. Соломенцев 1, Г. М. Титарева 1, И. В. Бахтеева 1, Т. Б. Кравченко 1, А. В. Брушков 23, В. С. Тимофеев 1, С. Г. Игнатов 12**

1 Государственный научный центр прикладной микробиологии и биотехнологии Роспотребнадзора
142279 р.п. Оболенск, Серпухов, Московская область, Россия

2 Московский государственный университет имени М.В. Ломоносова
119991 Москва, Россия

3 Тюменский государственный университет
625003 Тюмень, Россия

* E-mail: iulia.belay@yandex.ru
** E-mail: ignatov@obolensk.org

Поступила в редакцию 20.06.2023
После доработки 30.06.2023
Принята к публикации 06.07.2023

Аннотация

Из проб почвы в регионе вечной мерзлоты (Якутия, Россия) выделены штаммы рода Bacillus и дана их фенотипическая характеристика. Анализ полученных данных позволил отнести их к группе Bacillus cereus complex. ПЦР-анализ позволил определить профиль генов синтеза токсинов В. cereus в геномах исследуемых штаммов. Получена генетическая характеристика путем RAPD-генотипирования и с использованием MLVA-локусов, применяемых для генотипирования возбудителя сибирской язвы. Результаты генотипирования разного уровня разрешения позволили дифференцировать исследуемые штаммы от вида B. anthracis, показать их внутривидовые генетические различия и степень родства. Осуществлено полногеномное секвенирование, на основе данных которого проведено MLST-генотипирование, которое выявило 2 известных сиквенс-типа и один новый, впервые описанный в настоящей работе. Полученные результаты имеют прикладное значение и крайне интересны с точки зрения эволюции и филогеографии группы В. cereus complex, поскольку факт выделения штаммов из вечной мерзлоты дает основания предположить, что их возраст может быть гораздо выше предполагаемого.

Ключевые слова: Bacillus cereus complex, Bacillus anthracis, токсины, генотипирование, MLVA, MLST, RAPD, вечная мерзлота

Список литературы

  1. Stepanov I., Makarov I., Makarova E. et al. // Climatic Change. 2023. V. 176. № 4. P. 39. https://doi.org/10.1007/s10584-023-03512-5

  2. Baldwin V.M. // Front. Microbiol. 2020. P. 11. https://doi.org/10.3389/fmicb.2020.01731

  3. Carroll L.M., Kovac J., Miller R.A., Wiedmann M. // Appl. Environ. Microbiol. 2017. V. 83. № 17. e01096-17. https://doi.org/10.1128/AEM.01096-17

  4. Jovanovic J., Ornelis V.F.M., Madder A., Rajkovic A. // Compr. Rev. Food. Sci. Food. Saf. 2021. V. 20. № 4. P. 3719–3761. https://doi.org/10.1111/1541-4337.12785

  5. Маринин Л.И., Онищенко Г.Г., Кравченко Т.Б., Дятлов И.А., Тюрин Е.А., Степанов А.В. Сибирская язва человека: эпидемиология, профилактика, диагностика, лечение. / М.: ЗАО МП Гигиена, 2008. 416 с.

  6. Маринин Л.И., Дятлов И.А., Мокриевич А.Н. Методы изучения биологических и молекулярно-генетических свойств возбудителя сибирской язвы: учебно-методическое пособие. / Ред. И.А. Дятлов. М.: Издательство “Династия”, 2021. 240 с.

  7. Drean P., Fox E.M. // Methods Mol. Biol. 2015. № 1301. P. 71–83. https://doi.org/10.1007/978-1-4939-2599-5_7

  8. Daffonchio D., Borin S., Frova G., Gallo R., Mori E., Fani R. et al. // Appl. Environ. Microbiol. 1999. V. 65. № 3. P. 1298–303. https://doi.org/10.1128/AEM.65.3.1298-1303.1999

  9. Oh M.H., Ham J.S., Cox J.M. // Int. J. Food Microbiol. 2012. V. 152. № 1–2. P. 1–8. https://doi.org/10.1016/j.ijfoodmicro.2011.09.018

  10. Ripabelli G., McLauchlin J., Mithani V., Threlfall E.J. // Lett. Appl. Microbiol. 2000. V. 30. № 5. P. 358–63. https://doi.org/10.1046/j.1472-765x.2000.00729.x

  11. Hill K.K., Ticknor L.O., Okinaka R.T., Asay M., Blair H., Bliss K.A. et al. // Appl. Environ. Microbiol. 2004. V. 70. № 2. P. 1068–1080. https://doi.org/10.1128/AEM.70.2.1068-1080.2004

  12. Helgason E., Okstad O.A., Caugant D.A., Johansen H.A., Fouet A., Mock M., Hegna I., Kolstø A.B. // Appl. Environ. Microbiol. 2000. V. 66. № 6. P. 2627–2630. https://doi.org/10.1128/AEM.66.6.2627-2630.2000

  13. Helgason E., Tourasse N.J., Meisal R., Caugant D.A., Kolstø A.B. // Appl. Environ. Microbiol. 2004. V. 70. № 1. P. 191–201. https://doi.org/10.1128/AEM.70.1.191-201.2004

  14. Priest F.G., Barker M., Baillie L.W., Holmes E.C., Maiden M.C. // J. Bacteriol. 2004. V. 186. № 23. P. 7959–7970. https://doi.org/10.1128/JB.186.23.7959-7970.2004

  15. Keim P., Price L.B., Klevytska A.M., Smith K.L., Schupp J.M., Okinaka R. et al. // J. Bacteriol. 2000. V. 182. № 10. P. 2928–2936. https://doi.org/10.1128/JB.182.10.2928-2936.2000

  16. Timofeev V., Bahtejeva I., Mironova R., Titareva G., Lev I., Christiany D. et al. // PLoS One. 2019. V. 14. № 5. e0209140. https://doi.org/10.1371/journal.pone.0209140

  17. Ehling-Schulz M., Guinebretiere M.H., Monthan A., Berge O. // FEMS Microbiol. Lett. 2006. V. 260. № 2. P. 232–240. https://doi.org/10.1111/j.1574-6968.2006.00320.x

  18. Marxen S., Stark T.D., Frenzel E., Rütschle A., Lücking G., Pürstinger G. et al. // Anal. Bioanal. Chem. 2015. V. 407. № 9. P. 2439–2453. https://doi.org/10.1007/s00216-015-8511-y

  19. Dietrich R., Jessberger N., Ehling-Schulz M., Märtlbauer E., Granum P.E. // Toxins (Basel). 2021. V. 13. № 2. P. 98. https://doi.org/10.3390/toxins13020098

  20. Kim J.B., Kim J.M., Kim S.Y., Kim J.H., Park Y.B., Choi N.J. et al. // J Food Prot. 2010. V. 73. № 7. P. 1219–1224. https://doi.org/10.4315/0362-028x-73.7.1219

  21. Kim J.M., Forghani F., Kim J.B., Park Y.B., Park M.S., Wang J. et al. // Food Science and Biotechnology. 2012. V. 21. № 5. P. 1439–1444. https://doi.org/10.1007/s10068-012-0189-8

  22. Tallent S.M., Hait J.M., Bennett R.W. // J. Appl. Microbiol. 2015. V. 118. № 4. P. 1068–1075. https://doi.org/10.1111/jam.12766

  23. Tsilia V., Devreese B., de Baenst I., Mesuere B., Rajkovic A., Uyttendaele M. et al. // Anal. Bioanal. Chem. 2012. V. 404. № 6–7. P. 1691–1702. https://doi.org/10.1007/s00216-012-6254-6

  24. Inatsu Y., Chotiko A., Ananchaipattana C. // Japan Agricultural Research Quarterly: JARQ. 2020. V. 54. № 1. P. 47–51. https://doi.org/10.6090/jarq.54.47

  25. Kuwana R., Imamura D., Takamatsu H., Watabe K. // Biocontrol Sci. 2012. V. 17. № 2. P. 83–86. https://doi.org/10.4265/bio.17.83

  26. Le Flèche P., Hauck Y., Onteniente L., Prieur A., Denoeud F., Ramisse V. et al. // BMC Microbiol. 2001. V. 1. P. 2. https://doi.org/10.1186/1471-2180-1-2

  27. Lista F., Faggioni G., Valjevac S., Ciammaruconi A., Vaissaire J., le Doujet C. et al. // BMC Microbiol. 2006. V. 6. P. 33. https://doi.org/10.1186/1471-2180-6-33

  28. Van Ert M.N., Easterday W.R., Huynh L.Y., Okinaka R.T., Hugh-Jones M.E., Ravel J. et al. // PLoS One. 2007. V. 2. № 5. e461. https://doi.org/10.1371/journal.pone.0000461

  29. Thierry S., Tourterel C., Le Flèche P., Derzelle S., Dekhil N., Mendy C. et al. // PLoS One. 2014. V. 9. № 6. e95131. https://doi.org/10.1371/journal.pone.0095131

  30. Turnbull P.C. // J. Appl. Microbiol. 1999. V. 87. № 2. P. 237–240. https://doi.org/10.1046/j.1365-2672.1999.00876.x

  31. Marston C.K., Gee J.E., Popovic T., Hoffmaster A.R. // BMC Microbiol. 2006. V. 6. P. 22. https://doi.org/10.1186/1471-2180-6-22

  32. Calvigioni M., Cara A., Celandroni F., Mazzantini D., Panattoni A., Tirloni E. et al. // J. Appl. Microbiol. 2022. V. 133. № 2. P. 1078–1088. https://doi.org/10.1111/jam.15636

  33. Valjevac S., Hilaire V., Lisanti O., Ramisse F., Hernandez E., Cavallo J.D. et al. // Appl. Environ. Microbiol. 2005. V. 71. № 11. P. 6613–6623. https://doi.org/10.1128/AEM.71.11.6613-6623.2005

  34. Antonation K.S., Grützmacher K., Dupke S., Mabon P., Zimmermann F., Lankester F. et al. // PLoS Negl. Trop. Dis. 2016. V. 10. № 9. e0004923. https://doi.org/10.1371/journal.pntd.0004923

  35. Goncharova Y., Bahtejeva I., Titareva G., Kravchenko T., Lev A., Dyatlov I., Timofeev V. // Pathogens. 2021. V. 10. № 12. P. 1556. https://doi.org/10.3390/pathogens10121556

  36. Kolstø A.B., Tourasse N.J., Økstad O.A. // Annu. Rev. Microbiol. 2009. № 63. P. 451–476. https://doi.org/10.1146/annurev.micro.091208.073255

  37. Federhen S., Rossello-Mora R., Klenk H.P., Tindall B.J., Konstantinidis K.T., Whitman W.B. et al. // Stand. Genomic Sci. 2016. V. 11. № 1. https://doi.org/10.1186/s40793-016-0134-1

  38. Ciufo S., Kannan S., Sharma S., Badretdin A., Clark K., Turner S. et al. // Int. J. Syst. Evol. Microbiol. 2018. V. 68. № 7. P. 2386–2392. https://doi.org/10.1099/ijsem.0.002809

  39. Stella E., Mari L., Gabrieli J., Barbante C., Bertuzzo E. // Sci. Rep. 2020. V. 10. № 1. P. 16460. https://doi.org/10.1038/s41598-020-72440-6

  40. da Silva T.H., Queres Gomes E.C., Gonçalves V.N., da Costa M.C., Valério A.D., de Assis Santos D. et al. // Fungal Biol. 2022. V. 126. № 8. P. 488–497. https://doi.org/10.1016/j.funbio.2022.04.003

Дополнительные материалы отсутствуют.