Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 11, стр. 1650-1664

У самок мышей нокаутов по гену TAAR1 отсутствует ранний поведенческий ответ на острый иммобилизационный стресс

Е. П. Виноградова 1, Ю. А. Симон 1, А. Ю. Александров 1, В. М. Князева 1*, Л. Н. Станкевич 1, А. В. Козырева 1, А. А. Александров 1

1 Санкт-Петербургский государственный университет
Санкт-Петербург, Россия

* E-mail: v.m.knyazeva@spbu.ru

Поступила в редакцию 12.09.2023
После доработки 06.10.2023
Принята к публикации 06.10.2023

Аннотация

Целью данной работы было изучение роли TAAR1, представителя семейства рецепторов, ассоциированных со следовыми аминами (trace amine-associated receptors, TAARs) в формировании поведенческого компонента стрессорного ответа. Исследовалось поведение самок мышей нокаутных по гену, кодирующему T-AAR1 (TAAR1-KO) и мышей дикого типа (WT) в тестах приподнятый крестообразный лабиринт (ПКЛ) и приподнятый О-образный лабиринт (ПОЛ) и тесте принудительного плавания в норме и после неконтролируемого стрессорного воздействия (стресс иммобилизации – 30 мин). В тесте ПКЛ исходные показатели поведения у мышей TAAR1-KO и WT не различались. В тесте ПОЛ исходные показатели уровня тревожности у самок TAAR1-KO по сравнению с самками WT были выше, а двигательной активности ниже. При тестировании мышей в ПОЛ через 30 мин после окончания стрессорного воздействия было обнаружено, что у самок WT увеличился уровень тревожности, снизились показатели двигательной и исследовательской активности. Показатели поведения в тесте ПОЛ у мышей TAAR1-KO до и после стресса оказались идентичными. Спустя 4 ч после стресса – при тестировании в ПКЛ поведенческий компонент стрессорного ответа наблюдался как у мышей TAAR1-KO, так у WT. Различий между мышами TAAR1-KO и WT при тестировании в ПКЛ через 4 ч после стресса не было обнаружено. Через три недели после стресса поведенческий компонент стрессорного ответа сохранялся у обеих групп. В тесте принудительного плавания латентный период до первой неподвижности изначально был больше у мышей TAAR1-KO по сравнению с мышами WT, через 24 ч после стресса этот показатель снизился. В результате мыши TAAR1-KO и WT не различались по всем поведенческим показателям. Через три недели после стресса в группах TAAR1-KO и WT наблюдалось значительное увеличение продолжительности неподвижности и снижение латентного периода до первой неподвижности, различий между группами животных обнаружено не было. Таким образом, мы обнаружили полное отсутствие изменений в поведении сразу после воздействия стрессора у TAAR1-KO по сравнению с мышами WT.

Ключевые слова: рецепторы, ассоциированные со следовыми аминами, TAAR1, тест принудительного плавания, тревожность, приподнятый крестообразный лабиринт, приподнятый круговой лабиринт, кортикотропин-рилизинг-гормон, стресс иммобилизации, вызванные стрессом быстрые изменения поведения

Список литературы

  1. Lindemann L, Hoener MC (2005) A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol Sci 26: 274–281. https://doi.org/10.1016/j.tips.2005.03.007

  2. Berry MD, Gainetdinov RR, Hoener MC, Shahid M (2017) Pharmacology of human trace amine-associated receptors: therapeutic opportunities and challenges. Pharmacol Ther 180: 161–180. https://doi.org/10.1016/j.pharmthera.2017.07.002

  3. Rutigliano G, Accorroni A, Zucchi R (2018) The case for TAAR1 as a modulator of central nervous system function. Front Pharmacol 8: 987. https://doi.org/10.3389/fphar.2017.00987

  4. Gainetdinov RR, Hoener MC, Berry MD (2003) Trace Amines and Their Receptors. Pharmacol Rev (2018) 70(3): 549–620. https://doi.org/10.1124/pr.117.015305

  5. Branchek TA, Blackburn TP Trace amine receptors as targets for novel therapeutics: legend, myth and fact. Curr Opin Pharmacol 3(1): 90–97. https://doi.org/10.1016/s1471-4892(02)00028-0

  6. Pei Y, Asif-Malik A, Canales JJ (2016) Trace amines and the trace amine-associated receptor 1: pharmacology, neurochemistry, and clinical implications. Front Neurosci 10: 148. https://doi.org/10.3389/fnins.2016.00148

  7. Berry MD (2007) The potential of trace amines and their receptors for treating neurological and psychiatric diseases. Rev Recent Clin Trials 2(1): 3–19. https://doi.org/10.2174/157488707779318107

  8. Sotnikova TD, Caron MG, Gainetdinov RR (2009) Trace Amine-Associated Receptors as Emerging Therapeutic Targets. Mol Pharmacol 76(2): 229–235. https://doi.org/10.1124/mol.109.055970

  9. Rutigliano G, Zucchi R (2020) Molecular Variants in Human Trace Amine-Associated Receptors and Their Implications in Mental and Metabolic Disorders. Cell Mol Neurobiol 40(2): 239–255. https://doi.org/10.1007/s10571-019-00743-y

  10. Revel FG, Moreau JL, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, Durkin S, Zbinden KG, Norcross R, Meyer CA, Metzler V, Chaboz S, Ozmen L, TrubeG, Pouzet B, Bettler B, Caron MG, Wettstein JG, Hoener MC (2011) TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Natl Acad Sci U S A 108(20): 8485–8490. https://doi.org/10.1073/pnas.1103029108

  11. Revel FG, Moreau JL, Gainetdinov RR, Ferragud A, Velázquez-Sánchez C, Sotnikova TD, Morairty SR, Harmeier A, Zbinden GK, Norcross RD, Bradaia A, Kilduff TS, Biemans B, Pouzet B, Caron MG, Canales JJ, Wallace TL, Wettstein JG, Hoener MC (2012) Trace amine-associated receptor 1 partial agonism reveals novel paradigm for neuropsychiatric therapeutics. Biol Psychiatry 72: 934–942. https://doi.org/10.1016/j.biopsych.2012.05.014

  12. Revel FG, Moreau JL, Pouzet B, Mory R, Bradaia A, Buchy D, Metzler V, Chaboz S, Groebke Zbinden K, Galley G, Norcross RD, Tuerck D, Bruns A, Morairty SR, Kilduff TS, Wallace TL, Risterucci C, Wettstein JG, Hoener MC (2013) A new perspective for schizophrenia: TAAR1 agonists reveals antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol Psychiatry 18: 543–556. https://doi.org/10.1038/mp.2012.57

  13. Lopez AD, Murray CC (1998) The global burden of disease, 1990–2020. Nat Med 4: 1241–1243. https://doi.org/10.1038/3218

  14. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). Jama 289: 3095–3105. https://doi.org/10.1001/jama.289.23.3095

  15. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455: 894–902. https://doi.org/10.1038/nature07455

  16. Pizzagalli DA (2014) Depression, stress, and anhedonia: toward a synthesis and integrated model. Ann Rev Clin Psychol 10: 393–423. https://doi.org/10.1146/annurev-clinpsy-050212-185606

  17. Hao Y, Ge H, Sun M, Gao Y (2019) Selecting an Appropriate Animal Model of Depression. Int J Mol Sci 20: 4827. https://doi.org/10.3390/ijms20194827

  18. Cryan JF, Mombereau C (2004) In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 9: 326–357. https://doi.org/10.1038/sj.mp.4001457

  19. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455: 89–902. https://doi.org/10.1038/nature07455

  20. Kessler RC, McGonagle KA, Swartz M, Blazer DG, Nelson CB (1993) Sex and depression in the National Comorbidity Survey I: Lifetime prevalence, chronicity and recurrence. J Affect Disord 29: 85–96. https://doi.org/10.1016/0165-0327(93)90026-g

  21. McEwen BS, Milner TA (2017) Understanding the Broad Influence of Sex Hormones and Sex Differences in the Brain. J Neurosci Res 95: 24–39. https://doi.org/10.1002/jnr.23809

  22. European Convention for the Protection of Vertebrate Animals Used for Experimentation and other Scientific Purposes. 1986.

  23. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2: 322–328. https://doi.org/10.1038/nprot.2007.44

  24. Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 24(3): 525–529. https://doi.org/10.1016/0091-3057(86)90552-6

  25. Braun AA, Skelton MR, Vorhees CV, Williams MT (2011) Comparison of the elevated plus and elevated zero mazes in treated and untreated male Sprague-Dawley rats: Effects of anxiolytic and anxiogenic agents. Pharmacol Biochem Behav 97(3): 406–415. https://doi.org/10.1016/j.pbb.2010.09.013

  26. Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Gould TD (2012) The Mouse Forced Swim Test. J Vis Exp 59: e3638. https://doi.org/10.3791/3638

  27. Yankelevitch-Yahav R, Franko M, Huly A, Doron R (2015) The Forced Swim Test as a Model of Depressive-like Behavior. J Vis Exp 97: e52587. https://doi.org/10.3791/52587

  28. Birmann PT, Domingues M, Casaril AM, Smaniotto TA, Hartwig D, Jacob RG, Savegnago L (2021) A pyrazole-containing selenium compound modulates neuroendocrine, oxidative stress, and behavioral responses to acute restraint stress in mice. Behav Brain Res 396: 112874. https://doi.org/10.1016/j.bbr.2020.112874

  29. Galeeva A, Tuohimaa P (2001) Analysis of mouse plus-maze behavior modulated by ovarian steroid. Behav Brain Res 119(1): 41–47. https://doi.org/10.1016/s0166-4328(00)00341-7

  30. Виноградова ЕП, Зайченко ИН, Жуков ДА (1996) Влияние стресса на уровень тревожности у самок белых крыс в различные стадии эстрального цикла. Журн высш нервн деятельн им ИП Павлова 46(4): 769–775. [Vinogradova EP, Zaichenko IN, Zhukov DA (1996) The effect of stress on the anxiety level in female white rats at different stages of the estrous cycle. Zh Vyssh Nerv Deiat im IP Pavlova 46(4): 769–775. (In Russ)].

  31. Scholl JL, Afzal A, Fox LC, Watt MJ, Forster GL (2019) Sex differences in anxiety-like behaviors in rats. Physiol Behav 211: 112670. https://doi.org/10.1016/j.physbeh.2019.112670

  32. Cora MC, Kooistra L, Travlos G (2015) Vaginal cytology of the laboratory rat and mouse: review and criteria for the staging of the estrous cycle using stained vaginal smears. Toxicol Pathol 43: 776–793. https://doi.org/10.1177/0192623315570339

  33. Felicio LS, Nelson JF, Finch CE (1984) Longitudinal studies of estrous cyclicity in aging C57BL/6J mice: II. Cessation of cyclicity and the duration of persistent vaginal cornification. Biol Reprod 31: 446–453. https://doi.org/10.1095/biolreprod31.3.446

  34. Wolinsky TD, Swanson CJ, Smith KE, Zhong H, Borowsky B, Seeman P, Branchek T, Gerald CP (2007) The Trace Amine 1 receptor knockout mouse: an animal model with relevance to schizophrenia. Genes Brain Behav 6(7): 628–639. https://doi.org/10.1111/j.1601-183X.2006.00292.x

  35. Zhukov IS, Karpova IV, Krotova NA, Tissen IY, Demin KA, Shabanov PD, Budygin EA, Kalueff AV, Gainetdinov RR (2022) Enhanced Aggression, Reduced Self-Grooming Behavior and Altered 5‑HT Regulation in the Frontal Cortex in Mice Lacking Trace Amine-Associated Receptor 1 (TAAR1). Int J Mol Sci 23(22): 14066. https://doi.org/10.3390/ijms232214066

  36. Kulkarni SK, Singh K, Bishnoi M (2007) Elevated zero maze: a paradigm to evaluate antianxiety effects of drugs. Methods Find Exp Clin Pharmacol 29: 343–348. https://doi.org/10.1358/mf.2007.29.5.1117557

  37. Tucker LB, McCabe JT (2017) Behavior of Male and Female C57BL/6J Mice Is More Consistent with Repeated Trials in the Elevated Zero Maze than in the Elevated Plus Maze. Front Behav Neurosci 11: 13. https://doi.org/10.3389/fnbeh.2017.00013

  38. Liu J, Hester K, Pope C (2021) Dose- and time-related effects of acute diisopropylfluorophosphate intoxication on forced swim behavior and sucrose preference in rats. Neurotoxicology 82: 82–88. https://doi.org/10.1016/j.neuro.2020.11.007

  39. Armario A, Gavalda A, Marti J (1995) Comparison of the behavioural and endocrine to forced swimming stress in five inbred strains of rats. Psychoneuroendocrinology 20: 879–890. https://doi.org/10.1016/0306-4530(95)00018-6

  40. Swiergiel AH, Leskov IL, Dunn AJ (2008) Effects of chronic and acute stressors and CRF on depression-like behavior in mice. Behav Brain Res 186(1): 32–40. https://doi.org/10.1016/j.bbr.2007.07.018

  41. Tang J, Yu W, Chen S, Gao Z, Xiao B (2018) Microglia Polarization and Endoplasmic Reticulum Stress in Chronic Social Defeat Stress Induced Depression, Mouse. Neurochem Res 43: 985–994. https://doi.org/10.1007/s11064-018-2504-0

  42. Leschik J, Gentile A, Cicek C, P’eron S, Tevosian M, Beer A, Radyushkin K, Bludau A, Ebner K, Neumann I, Singewald N, Berninger B, Lessmann V, Lutz B (2022) Brain-derived neurotrophic factor expression in serotonergic neurons improves stress resilience and promotes adult hippocampal neurogenesis. Progr Neurobiol 217: 102333. https://doi.org/10.1016/j.pneurobio.2022.102333

  43. Rygula R, Abumaria N, Flugge G, Fuchs E, Ruther E, Havemann-Reinecke U (2005) Anhedonia and motivational deficits in rats: impact of chronic social stress. Behav Brain Res 162: 127–134. https://doi.org/10.1016/j.bbr.2005.03.009

  44. Overstreet DH, Friedman E, Mathé AA, Yadid G (2005) The Flinders Sensitive Line rat: a selectively bred putative animal model of depression. Neurosci Biobehav Rev 29: 739–759. https://doi.org/10.1016/j.neubiorev.2005.03.015

  45. Commons KG, Cholanians AB, Babb JA, Ehlinger DG (2017) The Rodent Forced Swim Test Measures Stress-Coping Strategy, Not Depression-like Behavior. ACS Chem Neurosci 8: 955–960. https://doi.org/10.1021/acschemneuro.7b00042

  46. de Kloet ER, Molendijk ML (2016) Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism. Neural Plasticity 2016: 6503162. https://doi.org/10.1155/2016/6503162

  47. Koob GF (1999) Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry 46: 1167–1180. https://doi.org/10.1016/s0006-3223(99)00164-x

  48. Stanton LM, Price AJ, Manning EE (2023) Hypothalamic corticotrophin releasing hormone neurons in stress-induced psychopathology: Revaluation of synaptic contributions. J Neuroendocrinol 35: e13268. https://doi.org/10.1111/jne.13268

  49. Valentino RJ, Rudoy C, Saunders A, Liu XB, Van Bockstaele EJ (2001) Corticotropin-releasing factor is preferentially colocalized with excitatory rather than inhibitory amino acids in axon terminals in the peri-locus coeruleus region. Neuroscience 106: 375–384. https://doi.org/10.1016/s0306-4522(01)00279-2

  50. Gallagher JP, Orozco-Cabal LF, Liu J, Shinnick-Gallagher P (2008) Synaptic physiology of central CRH system. Eur J Pharmacol 583: 215–225. https://doi.org/10.1016/j.ejphar.2007.11.075

  51. Mazzitelli M, Yakhnitsa V, Neugebauer B, Neugebauer V (2022) Optogenetic manipulations of CeA-CRF neurons modulate pain- and anxiety-like behaviors in neuropathic pain and control rats. Neuropharmacology 210: 109031. https://doi.org/10.1016/j.neuropharm.2022.109031

  52. Paretkara T, Dimitrova E (2018) The central amygdala corticotropin-releasing hormone (CRH) neurons modulation of anxiety-like behavior and hippocampus-dependent memory in mice. Neuroscience 390: 187–197. https://doi.org/10.1016/j.neuroscience.2018.08.019

  53. Holsboer F, Ising M (2008) Central CRH system in depression and anxiety-evidence from clinical studies with CRH1. Eur J Pharmacol 583: 350–357. https://doi.org/10.1016/j.ejphar.2007.12.032

  54. Henckens MJ, Deussing JM, Chen A (2016) Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat Rev Neurosci 17: 636–651. https://doi.org/10.1038/nrn.2016.94

  55. Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, Scheimann J, Myers B (2016) Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr Physiol 6: 603–621. https://doi.org/10.1002/cphy.c150015

  56. Blank T, Nijholt I, Grammatopoulos DK, Randeva HS, Hillhouse E, Spiess J (2003) Corticotropin-Releasing Factor Receptors Couple to Multiple G-Proteins to Activate Diverse Intracellular Signaling Pathways in Mouse Hippocampus: Role in Neuronal Excitability and Associative Learning. J Neurosci 23: 700–707. https://doi.org/10.1523/JNEUROSCI.23-02-00700.2003

  57. Blank T, Nijholt I, Eckart K, Spiess J (2002) Priming of Long-Term Potentiation in Mouse Hippocampus by Corticotropin-Releasing Factor and Acute Stress: Implications for Hippocampus-Dependent Learning. J Neurosci 22: 3788–3794. https://doi.org/10.1523/JNEUROSCI.22-09-03788.2002

  58. Pollandt S, Liu J, Orozco-Cabal L, Grigoriadis DE, Vale WW, Gallagher JP, Shinnick-Gallagher P (2006) Cocaine withdrawal enhances long-term potentiation induced by corticotropin-releasing factor at central amygdala glutamatergic synapses via CRF1, NMDA receptors and PKA. Eur J Neurosci 24: 1733–1743. https://doi.org/10.1111/j.1460-9568.2006.05049.x

Дополнительные материалы отсутствуют.