Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 11, стр. 1617-1634

Экспериментальные модели митохондриальных дисфункций при патогенезе болезней ЦНС на зебраданио

Л. В. Юшко 1, М. М. Котова 1, Т. В. Вьюнова 2, А. В. Калуев 1345*

1 Направление “Нейробиология”, Научный центр генетики и наук о жизни, Научно-технологический университет “Сириус”
Федеральная территория Сириус, Россия

2 Лаборатория технологий нейрореабилитации, Центр Life Improvement by Future Technologies “LIFT”
Москва, Россия

3 Уральский федеральный университет
Екатеринбург, Россия

4 Национальный медицинский исследовательский центр им. В.А. Алмазова МЗ РФ
Санкт-Петербург, Россия

5 Институт трансляционной биомедицины, Санкт-Петербургский государственный университет
Санкт-Петербург, Россия

* E-mail: avkalueff@gmail.com

Поступила в редакцию 09.09.2023
После доработки 04.10.2023
Принята к публикации 04.10.2023

Аннотация

Нарушения функций митохондрий в клетках мозга связаны с патогенезом заболеваний различной этиологии, в том числе болезней Альцгеймера, Паркинсона и Гентингтона, бокового амиотрофический склероза, синдрома Ли, аутизма и других. Для изучения митохондриальных дисфункций и создания новых терапевтических средств большое значение имеют исследования на животных. Помимо традиционных моделей на грызунах, пресноводная костная рыба зебраданио (zebrafish, Danio rerio) представляет особый интерес как модельный объект в силу своих биологических характеристик, практичности и возможности получить больший объем экспериментальных данных. В работе обсуждаются генетические и фармакологические модели митохондриальных дисфункций и связанных с ними неврологических расстройств на грызунах и зебраданио. Приведенные данные указывают на зебраданио как эффективную трансляционную модель для изучения патогенеза различных заболеваний мозга, связанных с митохондриальными дисфункциями.

Ключевые слова: митохондрии, митохондриальные дисфункции, болезни ЦНС, модельные организмы, зебраданио

Список литературы

  1. Murali Mahadevan H, Hashemiaghdam A, Ashrafi G, Harbauer AB (2021) Mitochondria in Neuronal Health: From Energy Metabolism to Parkinson’s Disease. Adv Biol 5(9): e2100663. https://doi.org/10.1002/adbi.202100663

  2. Физиология человека с основами патофизиологии (2019) в 2 т. Т 1 под ред РФ Шмидта, Ф Ланга, М Хекманна; пер с нем под ред МА Каменской. М. Лаборатория знаний. [Human physiology with the basics of pathophysiology (2019) in 2 vol. Vol 1 eds RF Schmidt, F Lang, M Heckmann; translation from German edited by MA Kamenskaya. M. Knowledge Laboratory. (In Russ)].

  3. Johnson, J, Mercado-Ayon E, Mercado-Ayon Y, Dong YN, Halawani S, Ngaba L, Lynch DR (2021) Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Arch Biochem Biophys 702: 108698. https://doi.org/10.1016/j.abb.2020.108698

  4. Knedlik T, Giacomello M (2022) Mitochondria and Central Nervous System Disorders. Biomolecules 12(10): 1414. https://doi.org/10.3390/biom12101414

  5. Finsterer J (2012) Cognitive dysfunction in mitochondrial disorders. Acta Neurol Scand 126(1): 1–11. https://doi.org/10.1111/j.1600-0404.2012.01649.x

  6. 9C40.8 — наследственная оптическая нейропатия 2023 https://mkb11.online/107396

  7. Socolik O, Prozorova G (2022) Analysis of significance of mitochondrial dysfunction in the pathogenesis of diseases of the central nervous system. Neurosci Res Notes 5 (3): 1–10. https://doi.org/10.31117/neuroscirn.v5i3.151

  8. Lax NZ, Gorman GS, Turnbull DM (2017) Review: Central nervous system involvement in mitochondrial disease. Neuropathol Appl Neurobiol 43(2): 102–118. https://doi.org/10.1111/nan.12333

  9. DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. New Eng J Med 348(26): 2656–2668. https://doi.org/10.1056/NEJMra022567

  10. Klopstock T, Priglinger C, Yilmaz A, Kornblum C, Distelmaier F, Prokisch H (2021) Mitochondrial Disorders. Deutsches Arzteblatt Intl 118(44): 741–748. https://doi.org/10.3238/arztebl.m2021.0251

  11. Li D, Liang C, Zhang T, Marley JL., Zou W, Lian M, Ji D (2022) Pathogenic mitochondrial DNA 3243A>G mutation: From genetics to phenotype. Front Gen 13: 951185. https://doi.org/10.3389/fgene.2022.951185

  12. Зарипов С, Маматов Ж, Касимов А, Мамурова М (2023) Нарушение функции митохондрий при нейродегенеративных заболеваниях (литературный обзор). Евраз журн академ исследован 3(6 Part 3): 169–177. [Zaripov S, Mamatov Zh, Kasimov A, Mamurova M (2023) Mitochondrial dysfunction in neurodegenerative diseases (literature review). Euras J Acad Res 3(6 Part 3): 169–177. (In Russ)]. https://in-academy.uz/index.php/ejar/article/view/18388

  13. Johri A, Beal MF (2012) Mitochondrial dysfunction in neurodegenerative diseases. J Pharm Exper Ther 342(3): 619–630. https://doi.org/10.1124/jpet.112.192138

  14. Du T, Wang L, Liu W, Zhu G, Chen Y, Zhang J (2021) Biomarkers and the Role of α-Synuclein in Parkinson’s Disease. Front Aging Neurosci 13: 645996. https://doi.org/10.3389/fnagi.2021.645996

  15. Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 1147: 93–104. https://doi.org/10.1196/annals.1427.023

  16. Víctor VM, Espulgues JV, Hernández-Mijares A, Rocha M (2009) Oxidative stress and mitochondrial dysfunction in sepsis: a potential therapy with mitochondria-targeted antioxidants. Infectious Disord Drug Targets 9(4): 376–389. https://doi.org/10.2174/187152609788922519

  17. Maurel C, Dangoumau A, Marouillat S, Brulard C, Chami A, Hergesheimer R, Corcia P, Blasco H, Andres CR, Vourc’h P (2018) Causative Genes in Amyotrophic Lateral Sclerosis and Protein Degradation Pathways: a Link to Neurodegeneration. Mol Neurobiol 55(8): 6480–6499. https://doi.org/10.1007/s12035-017-0856-0

  18. Rose S, Niyazov DM, Rossignol DA, Goldenthal M, Kahler SG, Frye RE (2018) Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Mol Diagn Ther 22(5): 571–593. https://doi.org/10.1007/s40291-018-0352-x

  19. Frye RE (2020) Mitochondrial Dysfunction in Autism Spectrum Disorder: Unique Abnormalities and Targeted Treatments. Sem Ped Neurol 35: 100829. https://doi.org/10.1016/j.spen.2020.100829

  20. Roberts RC (2021) Mitochondrial dysfunction in schizophrenia: With a focus on postmortem studies. Mitochondrion 56: 91–101. https://doi.org/10.1016/j.mito.2020.11.009

  21. Международная классификация болезней 11-го пересмотра (МКБ-11). https://mkb11.online/

  22. МКБ-11 5C53.24 — Синдром Ли https://mkb11.online/104842

  23. Rahman S (2023) Leigh syndrome. Handbook Clin Neurol 194: 43–63. https://doi.org/10.1016/B978-0-12-821751-1.00015-4

  24. 6А6 Биполярное и сходные расстройства. https://mkb11.online/105462

  25. Ashleigh T, Swerdlow RH, Beal MF (2023) The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis. Alzheimer’s Dement 19(1): 333–342. https://doi.org/10.1002/alz.12683

  26. Raveau M, Shimohata A, Amano K, Miyamoto H, Yamakawa K (2018) DYRK1A-haploinsufficiency in mice causes autistic-like features and febrile seizures. Neurobiol Dis 110: 180–191. https://doi.org/10.1016/j.nbd.2017.12.003

  27. RESEARCH MODELS Tg2576. AlzForum Foundation Inc. https://www.alzforum.org/research-models/tg2576

  28. LaFerla FM, Green KN (2012) Animal models of Alzheimer disease. Cold Spring Harbor Persp Med 2(11): a006320. https://doi.org/10.1101/cshperspect.a006320

  29. Van Dam D, Vloeberghs E, Abramowski D, Staufenbiel M, De Deyn PP (2005) APP23 mice as a model of Alzheimer’s disease: an example of a transgenic approach to modeling a CNS disorder. CNS Spectrums 10(3): 207–222. https://doi.org/10.1017/s1092852900010051

  30. RESEARCH MODELS APP23. AlzForum Foundation Inc. https://www.alzforum.org/research-models/app23

  31. Куликова OИ, Федорова ТН, Орлова ВС (2019) Моделирование болезни Паркинсона с помощью экзогенных нейротоксинов (обзор литературы). Токсикол вестн 2(155): 9–15. [Kulikova OI, Fedorova TN, Orlova VS (2019) Modeling of Parkinson’s disease using ekzogennyh nejrotoksinov (obzor literature). Toksikol Vestn 2(155): 9–15. (In Russ)]. https://api.semanticscholar.org/CorpusID:182374837

  32. Sörensen L, Ekstrand M, Silva JP, Lindqvist E, Xu B, Rustin P, Olson L, Larsson NG (2001) Late-onset corticohippocampal neurodepletion attributable to catastrophic failure of oxidative phosphorylation in MILON mice. J Neurosci 21(20): 8082–8090. https://doi.org/10.1523/JNEUROSCI.21-20-08082.2001

  33. Galter D, Pernold K, Yoshitake T, Lindqvist E, Hoffer B, Kehr J, Larsson NG, Olson L (2010) MitoPark mice mirror the slow progression of key symptoms and L-DOPA response in Parkinson’s disease. Genes Brain Behav 9(2): 173–181. https://doi.org/10.1111/j.1601-183X.2009.00542.x

  34. Innos J, Hickey MA (2021) Using Rotenone to Model Parkinson’s Disease in Mice: A Review of the Role of Pharmacokinetics. Chem Res Toxicol 34(5): 1223–1239. https://doi.org/10.1021/acs.chemrestox.0c00522

  35. Ставровская АВ, Воронков ДН, Ольшанский АС, Гущина АС, Ямщикова НГ (2021) Взаимосвязь локализации повреждений дофаминовой иннервации стриатума и их поведенческих проявлений на 6-гидроксидофамин-индуцированной модели паркинсонизма у крыс. Анналы клин экспер неврол 15(2): 42–49. [Stavrovskaya AV, Voronkov DN, Olshansky AS, Gushchina AS, Yamshikova NG (2021) The relationship between the location of a lesion in the striatal dopaminergic innervation and its behavioral manifestation in a 6-hydroxydopamine-induced model of Parkinson’s disease in rats. Ann Clin Experim Neurol 15(2): 42–49. (In Russ)]. https://doi.org/10.25692/ACEN.2021.2.6

  36. Scott-McKean JJ, Chang B, Hurd RE, Nusinowitz S, Schmidt C, Davisson MT, Costa AC (2010) The mouse model of Down syndrome Ts65Dn presents visual deficits as assessed by pattern visual evoked potentials. Invest Ophthalmol Vis Sci 51(6): 3300–3308. https://doi.org/10.1167/iovs.09-4465

  37. Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in Huntington’s disease. Brain Pathol 9(1): 147–163. https://doi.org/10.1111/j.1750-3639.1999.tb00216.x

  38. Grillo AS, Bitto A, Kaeberlein M (2021) The NDUFS4 Knockout Mouse: A Dual Threat Model of Childhood Mitochondrial Disease and Normative Aging. Methods Mol Biol 2277: 143–155. https://doi.org/10.1007/978-1-0716-1270-5_10

  39. Ferrari M, Jain IH, Goldberger O, Rezoagli E, Thoonen R, Cheng KH, Sosnovik DE, Scherrer-Crosbie M, Mootha VK, Zapol WM (2017) Hypoxia treatment reverses neurodegenerative disease in a mouse model of Leigh syndrome. Proc Natl Acad Sci U S A 114(21): E4241–E4250. https://doi.org/10.1073/pnas.1621511114

  40. Anwar MR, Saldana-Caboverde A, Garcia S, Diaz F (2018) The Organization of Mitochondrial Supercomplexes is Modulated by Oxidative Stress In Vivo in Mouse Models of Mitochondrial Encephalopathy. Int J Mol Sci 19(6): 1582. https://doi.org/10.3390/ijms19061582

  41. Research models Ts65Dn. AlzForum Foundation Inc. https://www.alzforum.org/research-models/ts65dn

  42. Research models APP23 x PS1-R278I. AlzForum Foundation Inc. https://www.alzforum.org/research-models/app23-x-ps1-r278i

  43. Ekstrand MI, Galter D (2009) The MitoPark Mouse – an animal model of Parkinson’s disease with impaired respiratory chain function in dopamine neurons. Parkinson Relat Disords 15 Suppl 3: S185–S188. https://doi.org/10.1016/S1353-8020(09)70811-9

  44. Kolosova NG, Stefanova NA, Korbolina EE, Fursova AZh, Kozhevnikova OS (2014) A genetic model of premature aging and age-related diseases. Adv Gerontol 4: 294–298. https://doi.org/10.1134/S2079057014040146

  45. Макарова МН, Матичин АА, Матичина АА, Макаров ВГ (2022) Принципы выбора животных для научных исследований. Сообщение 1. Выбор модельных организмов на основании филогенетических связей. Лаб животные для научн исследов 2: 58–70. [Makarova MN, Matichin AА, Maticina AA, Makarov VG (2022) Animal choice strategy for research. Report 1: animal choice based on phylogenic relationships. Lab Animals for Sci 2: 58–70. (In Russ)]. https://doi.org/10.29296/2618723X-2022-02-07

  46. de Abreu MS, Demin KA, Kotova MM, Mirzaei F, Shariff S, Kantawala B, Zakharchenko KV, Kolesnikova TO, Dilbaryan K, Grigoryan A, Yenkoyan KB, Kalueff AV (2023) Developing Novel Experimental Models of m-TORopathic Epilepsy and Related Neuropathologies: Translational Insights from Zebrafish. Int J Mol Sci 24(2): 1530. https://doi.org/10.3390/ijms24021530

  47. Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M, Sallinen V (2010) The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 40(1): 46–57. https://doi.org/10.1016/j.nbd.2010.05.010

  48. Калуев АВ (2022) Принципы моделирования заболеваний мозга и их терапии на зебраданио (zebrafish). Обзоры клин фармакол и лекарств терапии 20(2): 119–122. [Kalueff AV (2022) Principles of modeling brain diseases and their therapy based on zebrafish studies. Rev Clin Pharmacol Drug Therapy 20(2): 119–122. (In Russ)]. https://doi.org/10.17816/RCF202119-122

  49. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Stemple DL (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446): 498–503. https://doi.org/10.1038/nature12111

  50. Кротова НА, Лакстыгал АМ, Таранов АС, Ильин НП, Бытов МВ, Волгин АД, Амстиславская ТГ, Демин КА, Калуев АВ (2019) Зебраданио (zebrafish) как новая перспективная модель в трансляционной нейробиологии. Рос физиол журн им ИМ Сеченова 105: 1417–1435. [Krotova NA, Lakstygal AM, Taranov AS, Ilyin NP, Bytov MV, Volgin AD, Amstislavskaya TG, Demin KA, Kalueff AV (2019) Zebrafish as a new promising model in translational neuroscience. Russ J Physiol 105: 1417–1435. (In Russ)]. https://doi.org/10.1134/S0869813919110062

  51. Wang J, Cao H (2021) Zebrafish and Medaka: Important Animal Models for Human Neurodegenerative Diseases. Int J Mol Sci 22(19): 10766. https://doi.org/10.3390/ijms221910766

  52. Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 13(3): 382–390. https://doi.org/10.1101/gr.640303

  53. Fichi G, Naef V, Barca A, Longo G, Fronte B, Verri T, Santorelli FM, Marchese M, Petruzzella V (2019) Fishing in the Cell Powerhouse: Zebrafish as A Tool for Exploration of Mitochondrial Defects Affecting the Nervous System. Int J Mol Sci 20(10): 2409. https://doi.org/10.3390/ijms20102409

  54. Drerup CM, Herbert AL, Monk KR, Nechiporuk AV (2017) Regulation of mitochondria-dynactin interaction and mitochondrial retrograde transport in axons. eLife 6: e22234. https://doi.org/10.7554/eLife.22234

  55. Halpern ME, Rhee J, Goll MG, Akitake CM, Parsons M, Leach SD (2008) Gal4/UAS transgenic tools and their application to zebrafish. Zebrafish 5(2): 97–110. https://doi.org/10.1089/zeb.2008.0530

  56. Mandal A, Pinter K, Drerup CM (2018) Analyzing Neuronal Mitochondria in vivo Using Fluorescent Reporters in Zebrafish. Front Cell Dev Biol 6: 144. https://doi.org/10.3389/fcell.2018.00144

  57. Song Y, Selak MA, Watson CT, Coutts C, Scherer PC, Panzer JA, Gibbs S, Scott MO, Willer G, Gregg RG, Ali DW, Bennett MJ, Balice-Gordon RJ (2009) Mechanisms underlying metabolic and neural defects in zebrafish and human multiple acyl-CoA dehydrogenase deficiency (MADD). PloS One 4(12): e8329. https://doi.org/10.1371/journal.pone.0008329

  58. Yue P, Yang X, Ning P, Xi X, Yu H, Feng Y, Shao R, Meng X (2018) A mitochondria-targeted ratiometric two-photon fluorescent probe for detecting intracellular cysteine and homocysteine. Talanta 178: 24–30. https://doi.org/10.1016/j.talanta.2017.08.085

  59. Artuso L, Romano A, Verri T, Domenichini A, Argenton F, Santorelli FM, Petruzzella V. (2012) Mitochondrial DNA metabolism in early development of zebrafish (Danio rerio). Biochim Biophys Acta 1817(7): 1002–1011. https://doi.org/10.1016/j.bbabio.2012.03.019

  60. Zurita Rendón O, Silva Neiva L, Sasarman F, Shoubridge EA (2014) The arginine methyltransferase NDUFAF7 is essential for complex I assembly and early vertebrate embryogenesis. Hum Mol Gen 23(19): 5159–5170. https://doi.org/10.1093/hmg/ddu239

  61. Kumar MG, Rowley S, Fulton R, Dinday MT, Baraban SC, Patel M (2016) Altered Glycolysis and Mitochondrial Respiration in a Zebrafish Model of Dravet Syndrome. eNeuro 3(2): ENEURO 0008-16.2016. https://doi.org/10.1523/ENEURO.0008-16.2016

  62. Flinn LJ, Keatinge M, Bretaud S, Mortiboys H, Matsui H, De Felice E, Woodroof HI, Brown L, McTighe A, Soellner R, Allen CE, Heath PR, Milo M, Muqit MM, Reichert AS, Köster RW, Ingham PW, Bandmann O (2013) TigarB causes mitochondrial dysfunction and neuronal loss in PINK1 deficiency. Ann Neurol 74(6): 837–847. https://doi.org/10.1002/ana.23999

  63. Ye C, Chen P, Xu B, Jin Y, Pan Y, Wu T, Du Y, Mao J, Wu R (2023) Abnormal expression of fission and fusion genes and the morphology of mitochondria in eutopic and ectopic endometrium. Eur J Med Res 28(1): 209. https://doi.org/10.1186/s40001-023-01180-w

  64. Vettori A, Bergamin G, Moro E, Vazza G, Polo G, Tiso N, Argenton F, Mostacciuolo ML (2011) Developmental defects and neuromuscular alterations due to mitofusin 2 gene (MFN2) silencing in zebrafish: a new model for Charcot-Marie-Tooth type 2A neuropathy. Neuromusc Disords 21(1): 58–67. https://doi.org/10.1016/j.nmd.2010.09.002

  65. Campbell PD, Shen K, Sapio MR, Glenn TD, Talbot WS, Marlow FL (2014) Unique function of Kinesin Kif5A in localization of mitochondria in axons. J Neurosci 34(44): 14717–14732. https://doi.org/10.1523/JNEUROSCI.2770-14.2014

  66. Kasprzyk-Pawelec A, Tan M, Phua YL, Rahhal R, McIntosh A, Fernandez H, Girgis M, Cheema A, Jiang L, Kroemer LF, Popratiloff A, Clarkson C, Kirmsa BM, Pearson GW, Glasgow E, Albanese C, Vockley J, Avantaggiati ML (2023) Loss of the mitochondrial citrate carrier, Slc25a1/CIC disrupts embryogenesis via 2-Hydroxyglutarate. bioRxiv 2023.07.18. 549409. https://doi.org/10.1101/2023.07.18.549409

  67. Chaouch A, Porcelli V, Cox D, Edvardson S, Scarcia P, De Grassi A, Pierri CL, Cossins J, Laval SH, Griffin H, Müller JS, Evangelista T, Töpf A, Abicht A, Huebner A, von der Hagen M, Bushby K, Straub V, Horvath R, Elpeleg O, Lochmüller H (2014) Mutations in the Mitochondrial Citrate Carrier SLC25A1 are Associated with Impaired Neuromuscular Transmission. J Neuromusc Dis 1(1): 75–90. https://doi.org/10.3233/JND-140021

  68. Yahalom G, Anikster Y, Huna-Baron R, Hoffmann C, Blumkin L, Lev D, Tsabari R, Nitsan Z, Lerman SF, Ben-Zeev B, Pode-Shakked B, Sofer S, Schweiger A, Lerman-Sagie T, Hassin-Baer S (2014) Costeff syndrome: clinical features and natural history. J Neurol 261(12): 2275–2282. https://doi.org/10.1007/s00415-014-7481-x

  69. Pei W, Kratz LE, Bernardini I, Sood R, Yokogawa T, Dorward H, Ciccone C, Kelley RI, Anikster Y, Burgess HA, Huizing M, Feldman B (2010) A model of Costeff Syndrome reveals metabolic and protective functions of mitochondrial OPA3. Development 137(15): 2587–2596. https://doi.org/10.1242/dev.043745

  70. Кожанова ТВ (2023) Возможности и достижения использования массового параллельного секвенирования в диагностике наследственных заболеваний с поражением нервной системы. Эпилепсия и пароксизмальн состояния 15(1): 44–52. [Kozhanova TV (2023) Opportunities and achievements of using massive parallel sequencing in the diagnosis of neurodevelopmental diseases. Epilepsy and Paroxysmal Conditions 15(1): 44–52. (In Russ)]. https://doi.org/10.17749/2077-8333/epi.par.con.2023.127

  71. Chen J, Guan L, Zou M, He S, Li D, Chi W (2020) Specific cyprinid HIF isoforms contribute to cellular mitochondrial regulation. Sci Rep 10(1): 17246. https://doi.org/10.1038/s41598-020-74210-w

  72. Di Donato S (2009) Multisystem manifestations of mitochondrial disorders. J Neurol 256(5): 693–710. https://doi.org/10.1007/s00415-009-5028-3

  73. Schmidt R, Strähle U, Scholpp S (2013) Neurogenesis in zebrafish – from embryo to adult. Neural Dev 8: 3. https://doi.org/10.1186/1749-8104-8-3

  74. Jain IH, Zazzeron L, Goli R, Alexa K, Schatzman-Bone S, Dhillon H, Goldberger O, Peng J, Shalem O, Sanjana NE, Zhang F, Goessling W, Zapol WM, Mootha VK (2016) Hypoxia as a therapy for mitochondrial disease. Science 352(6281): 54–61. https://doi.org/10.1126/science.aad9642

  75. Matsui H, Ito J, Matsui N, Uechi T, Onodera O, Kakita A (2021) Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of Parkinson’s disease. Nat Commun 12(1): 3101. https://doi.org/10.1038/s41467-021-23452-x

  76. Hu T, Dong Y, He C, Zhao M, He Q (2020) The Gut Microbiota and Oxidative Stress in Autism Spectrum Disorders (ASD). Oxid Med Cell Longev 2020: 8396708. https://doi.org/10.1155/2020/8396708

  77. Armstrong R (2019) Risk factors for Alzheimer’s disease. Folia Neuropathol 57(2): 87–105. https://doi.org/10.5114/fn.2019.85929

  78. Gevezova M, Sarafian V, Anderson G, Maes M (2020) Inflammation and Mitochondrial Dysfunction in Autism Spectrum Disorder. CNS Neurol Disords Drug Targets 19(5): 320–333. https://doi.org/10.2174/1871527319666200628015039

Дополнительные материалы отсутствуют.