Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 6, стр. 723-736

Влияние метаболита микробиоты – масляной кислоты на двигательную координацию, силу мышц и уровень окислительного стресса в скелетных мышцах при дисбиозе у мышей

О. В. Яковлева 1*, А. И. Муллакаева 1, А. Ф. Салихзянова 1, Д. М. Сорокина 1, Г. Ф. Ситдикова 1

1 Казанский федеральный университет
Казань, Россия

* E-mail: a-olay@yandex.ru

Поступила в редакцию 29.03.2023
После доработки 27.04.2023
Принята к публикации 27.04.2023

Аннотация

Согласно современным представлениям, состав и разнообразие кишечной микробиоты играют существенную роль в поддержании иммунитета, гомеостаза и в целом физиологических функций организма хозяина. В последние годы появились сообщения о позитивной роли микробиоты и ее метаболитов, особенно короткоцепочечных жирных кислот, в метаболизме и функциональной активности скелетных мышц. Целью нашей работы было проанализировать силу мышц и координацию движений у мышей после инъекции курса антибиотиков широкого спектра действия с одновременным пероральным введением метаболита микробиоты – одного из представителей короткоцепочечных жирных кислот – масляной кислоты. Кроме того, мы определили уровень малонового диальдегида, концентрацию общего глутатиона и активность глутатионпероксидаз в мышцах задних конечностей у мышей с введением антибиотиков и масляной кислоты. Введение антибиотиков мышам-подросткам в течение двух недель приводило к более высокой смертности и снижению прибавки в массе тела, а также вызывало значительные изменения в двигательном поведении, включая повышение горизонтальной двигательной активности, снижение вертикальной двигательной активности, мышечной силы, координации движений. Более высокий уровень окислительного стресса был обнаружен в тканях мышц задних конечностей мышей, получавших антибиотики. В то же время введение препарата масляной кислоты предотвращало наблюдаемые изменения и улучшало не только поведенческие нарушения, но и частично снижало уровень окислительного стресса. Таким образом, использование метаболитов нормальной микробиоты оказывает позитивное влияние на функциональные и биохимические показатели скелетных мышц при дисбиозе, что может быть использовано для предотвращения потери мышечной функции при различных патологических состояниях.

Ключевые слова: антибиотик-индуцированный дисбактериоз, масляная кислота, двигательная активность, мышечная сила, координация движений, окислительный стресс

Список литературы

  1. Nay K, Jollet M, Goustard B, Baati N, Vernus B, Pontones M, Lefeuvre-Orfila L, Bendavid C, Rué O, Mariadassou M, Bonnieu A, Ollendorff V, Lepage P, Derbré F, Koechlin-Ramonatxo C (2019) Gut bacteria are critical for optimal muscle function: A potential link with glucose homeostasis. Am J Physiol Endocrinol Metab 317(1): E158–E171. https://doi.org/10.1152/ajpendo.00521.2018

  2. Li G, Jin B, Fan Z (2022) Mechanisms Involved in Gut Microbiota Regulation of Skeletal Muscle. Oxid Med Cell Longev 2022: 151191. https://doi.org/10.1155/2022/2151191

  3. Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut Microbiota in Health and Disease. Physiol Rev 90: 859–904. https://doi.org/10.1152/physrev.00045.2009

  4. Evans WJ (2010) Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr 91(4): 1123S–1127S. https://doi.org/10.3945/ajcn.2010.28608A

  5. Shaidullov IF, Sorokina DM, Sitdikov FG, Hermann A, Abdulkhakov SR, Sitdikova GF (2021) Short chain fatty acids and colon motility in a mouse model of irritable bowel syndrome. BMC Gastroenterol 21(1): 37. https://doi.org/10.1186/s12876-021-01613-y

  6. Inan MS, Rasoulpour RJ, Yin L, Hubbard AK, Rosenberg DW, Giardina C (2000) The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology 118(4): 724–734. https://doi.org/10.1016/s0016-5085(00)70142-9

  7. Arslanova A, Tarasova A, Alexandrova A, Novoselova V, Shaidullov I, Khusnutdinova D, Grigoryeva T, Yarullina D, Yakovleva O, Sitdikova G (2021) Protective effects of probiotics on cognitive and motor functions, anxiety level, visceral sensitivity, oxidative stress and microbiota in mice with antibiotic-induced dysbiosis. Life 11(8): 764. https://doi.org/10.3390/life11080764

  8. Adamo KB, Graham TE (1998) Comparison of traditional measurements with macroglycogen and proglycogen analysis of muscle glycogen. J Appl Physiol 84(3): 908–913. https://doi.org/10.1152/jappl.1998.84.3.908

  9. Dinan TG, Cryan JF (2017) Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 595(2): 489–503. https://doi.org/10.1113/JP273106

  10. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104(3): 979–984. https://doi.org/10.1073/pnas.0605374104

  11. Bindels LB, Delzenne NM (2013) Muscle wasting: the gut microbiota as a new therapeutic target? Int J Biochem Cell Biol 45(10): 2186–2190. https://doi.org/10.1016/j.biocel.2013.06.021

  12. Gecse K, Róka R, Ferrier L, Leveque M, Eutamene H, Cartier C, Ait-Belgnaoui A, Rosztóczy A, Izbéki F, Fioramonti J, Wittmann T, Bueno L (2008) Increased faecal serine protease activity in diarrhoeic IBS patients: a colonic luminal factor impairing colonic permeability and sensitivity. Gut 57(5): 591–599. https://doi.org/10.1136/gut.2007.140210

  13. Padmaja S, Green-Johnson J (2015) Butyric acid inhibits a Toll-like receptor 2 agonist-mediated increase of Toll-like receptor 3-induced chemokine production by HT-29 intestinal epithelial cells. J Immunol 194(1): 196.11. https://doi.org/10.4049/jimmunol.194.Supp.196.11

  14. Lustgarten MS (2019) Role of the gut microbiome and short-chain fatty acids on skeletal muscle mass. Front Physiol 10: 1435. https://doi.org/10.3389/fphys.2019.01435

  15. Nobel YR, Cox LM, Kirigin FF, Bokulich NA, Yamanishi S, Teitler I, Chung J, Sohn J, Barber CM, Goldfarb DS, Raju K, Abubucker S, Zhou Y, Ruiz VE, Li H, Mitreva M, Alekseyenko AV, Weinstock GM, Sodergren E, Blaser MJ (2015) Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun 6: 7486. https://doi.org/10.1038/ncomms8486

  16. Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JBL, Nieuwdorp M (2010) The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 53(4): 606–613. https://doi.org/10.1007/s00125-010-1662-7

  17. Lahiri S, Kim H, Garcia-Perez I, Reza MM, Martin KA, Kundu P, Cox LM, Selkrig J, Posma JM, Zhang H, Padmanabhan P, Moret C, Gulyás B, Blaser MJ, Auwerx J, Holmes E, Nicholson J, Wahli W, Pettersson S (2019) The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med 11(502): eaan5662. https://doi.org/10.1126/scitranslmed.aan5662

  18. Manickam R, Oh HYP, Tan CK, Paramalingam E, Wahli W (2018) Metronidazole Causes Skeletal Muscle Atrophy and Modulates Muscle Chronometabolism. Int J Mol Sci 9(8): 2418. https://doi.org/10.3390/ijms19082418

  19. Okamoto T, Morino K, Ugi S, Nakagawa F, Lemecha M, Ida S, Ohashi N, Sato D, Fujita Y, Maegawa H (2019) Microbiome potentiates endurance exercise through intestinal acetate production. Am J Physiol Endocrinol Metab 316: E956–E966. https://doi.org/10.1152/ajpendo.00510.2018.0193-1849/19

  20. Huang WC, Chen YH, Chuang HL, Chiu CC, Huang CC (2019) Investigation of the effects of microbiota on exercise physiological adaption, performance, and energy utilization using a Gnotobiotic animal model. Front Microbiol 10: 1906. https://doi.org/10.3389/fmicb.2019.01906

  21. Frampton J, Murphy KG, Frost G, Chambers ES (2020) Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab 2(9): 840–848. https://doi.org/10.1038/s42255-020-0188-7

  22. Walsh ME, Bhattacharya A, Sataranatarajan K, Qaisar R, Sloane L, Rahman MM, Kinter M, Remmen HV (2015) The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell 14(6): 957–970. https://doi.org/10.1111/acel.12387

  23. Przewłócka K, Folwarski M, Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Kaczor JJ (2020) Gut-Muscle Axis Exists and May Affect Skeletal Muscle Adaptation to Training. Nutrients 12(5): 1451. https://doi.org/10.3390/nu12051451

  24. Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, Cotter PD, Dinan TG, Cryan JF (2015) Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav Immun 48: 165–173. https://doi.org/10.1016/j.bbi.2015.04.004

  25. De Paula Vieira A, de Passillé AM, Weary DM (2012) Effects of the early social environment on behavioral responses of dairy calves to novel events. J Dairy Sci 95(9): 5149–5155. https://doi.org/10.3168/jds.2011-5073

  26. Karl T, Pabst R, Von Hörsten S (2003) Behavioral phenotyping of mice in pharmacological and toxicological research. Exp Toxicol Pathol 55(1): 69–83. https://doi.org/10.1078/0940-2993-00301

  27. Weydt P, Hong SY, Kliot M, Möller T (2003) Assessing disease onset and progression in the SOD1 mouse model of ALS. NeuroReport 14(7): 1051–1054. https://doi.org/10.1097/01.wnr.0000073685.00308.89

  28. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2): 351–358. https://doi.org/10.1016/0003-2697(79)90738-3

  29. Razygraev AV, Yushina AD, Titovich IA (2018) Correction to: A Method of Measuring Glutathione Peroxidase Activity in Murine Brain: Application in Pharmacological Experiment. Bull Exp Biol Med 165(4): 589–592. https://doi.org/10.1007/s10517-018-4219-2

  30. Yakovlev AV, Dmitrieva SA, Krasnova AN, Yakovleva OV, Sitdikova GF (2022) Levels of Protein Carbonylation and Activity of Proteases in the Brain of Newborn Rats with Prenatal Hyperhomocysteinemia. Neurochem J 16(3): 243–250. https://doi.org/10.1134/S181971242203014X

  31. Varian BJ, Goureshetti S, Poutahidis T, Lakritz JR, Levkovich T, Kwok C, Teliousis K, Ibrahim YM, Mirabal S, Erdman SE (2007) Beneficial bacteria inhibit cachexia. Oncotarget 7: 11803–11816. https://doi.org/10.18632/oncotarget.7730

  32. Mekonnen SA, Merenstein D, Fraser CM, Marco ML (2020) Molecular mechanisms of probiotic prevention of antibiotic-associated diarrhea. Curr Opin Biotechnol 61: 226–234. https://doi.org/10.1016/j.copbio.2020.01.005

  33. Pérez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K, Otto W, Rojo D, Bargiela R, von Bergen M, Neulinger SC, Däumer C, Heinsen F-A, Latorre A, Barbas C, Seifert J, dos Santos VM, Ott SJ, Ferrer M, Moya A (2013) Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62(11): 1591–1601. https://doi.org/10.1136/gutjnl-2012-303184

  34. Binder HJ (2010) Role of Colonic Short-chain fatty acid transport in diarrhea. Annu Rev Physiol 72: 297–313. https://doi.org/10.1146/annurev-physiol-021909-135817

  35. Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B, Huffnagle GB, Li JZ, Young VB (2014) Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 5: 3114. https://doi.org/10.1038/ncomms4114

  36. dos Reis SA, da Conceição LL, Rosa DD, dos Santos Dias MM, do Carmo Gouveia Peluzio M (2015) Mechanisms used by inulin-type fructans to improve the lipid profile. Nutr Hosp 31(2): 528–534. https://doi.org/10.3305/nh.2015.31.2.7706

  37. Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, Possemiers S, Van Holle A, François P, de Vos WM, Delzenne NM, Schrenzel J, Cani PD (2011) Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60: 2775–2786. https://doi.org/10.2337/db11-0227

  38. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L (2016) Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front Microbiol 7: 979. https://doi.org/10.3389/fmicb.2016.00979

  39. Qiu Y, Yu J, Li Y, Yang F, Yu H, Xue M, Zhang F, Jiang X, Ji X, Bao Z (2021) Depletion of gut microbiota induces skeletal muscle atrophy by FXR-FGF15/19 signalling. Ann Med 53(1): 508–522. https://doi.org/10.1080/07853890.2021.1900593

  40. Nedogreeva OA, Stepanichev MY, Gulyaeva NV (2020) Removal of the Olfactory Bulbs in Mice Leads to Changes in Affective Behavior. Neurosci Behav Physiol 50: 892–899. https://doi.org/10.1007/s11055-020-00982-3

  41. Hsu YJ, Chiu CC, Li YP, Huang WC, Huang YT, Huang CC, Chuang HL (2015) Effect of Intestinal Microbiota on Exercise Performance in Mice. J Strength Condit Res 29(2): 552–558. https://doi.org/10.1519/JSC.0000000000000644

  42. Chen Y-M, Wei L, Chiu Y-S, Hsu Y-J, Tsai T-Y, Wang M-F, Huang C-C (2016) Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice. Nutrients 8(4): 205. https://doi.org/10.3390/nu8040205

  43. Jäger R, Shields KA, Lowery RP, De Souza EO, Partl JM, Hollmer C, Purpura M, Wilson JM (2016) Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery. Peer J 4: e2276. https://doi.org/10.7717/peerj.2276

  44. Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham LD, Wibowo MC, Wurth RC, Punthambaker S, Tierney BT, Yang Z, Hattab MW, Avila-Pacheco J, Clish CB, Lessard S, Church GM, Kostic AD (2019) Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med 25(7): 1104–1109. https://doi.org/10.1038/s41591-019-0485-4

  45. Rastelli M, Cani PD, Knauf C (2019) The gut microbiome influences host endocrine function. Endocr Rev 40(5): 1271–1284. https://doi.org/10.1210/er.2018-00280

  46. Grosicki GJ, Fielding RA, Lustgarten MS (2018) Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle axis. Calcif Tissue Int 102(4): 433–442. https://doi.org/10.1007/s00223-017-0345-5

  47. Guo A, Li K, Xiao Q (2020) Fibroblast growth factor 19 alleviates palmitic acid-induced mitochondrial dysfunction and oxidative stress via the AMPK/PGC-1α pathway in skeletal muscle. Biochem Biophys Res Commun 526(4): 1069–1076. https://doi.org/10.1016/j.bbrc.2020.04.002

  48. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278(13): 11312–11319. https://doi.org/10.1074/jbc.M211609200

  49. Nilsson NE, Kotarsky K, Owman C, Olde B (2003) Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 303(4): 1047–1052. https://doi.org/10.1016/s0006-291x(03)00488-1

  50. Ticinesi A, Lauretani F, Milani C, Nouvenne A, Tana C, Del Rio D, Maggio M, Ventura M, Meschi T (2017) Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: Is there a gut–muscle axis? Nutrients 9(12): 1303. https://doi.org/10.3390/nu9121303

  51. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58(7): 1509–1517. https://doi.org/10.2337/db08-1637

  52. Kalghatgi S, Spina CS, Costello JC, Liesa M, Morones-Ramirez JR, Slomovic S, Molina A, Shirihai OS, Collins JJ (2013) Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells. Sci Transl Med 5(192): 192ra85. https://doi.org/10.1126/scitranslmed.3006055

  53. Chen LH, Snyder DL (1992) Effects of age, dietary restriction and germ-free environment on glutathione-related enzymes in Lobund-Wistar rats. Arch Gerontol Geriatr 14(1): 17–26. https://doi.org/10.1016/0167-4943(92)90003-m

Дополнительные материалы отсутствуют.