Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 9, стр. 1167-1184

Маркеры нейроонтогенеза в гипочувствительный к стрессу период: сравнение у лабораторных грызунов и человека

А. О. Манолова 1*, Н. В. Гуляева 1

1 Институт высшей нервной деятельности и нейрофизиологии РАН
Москва, Россия

* E-mail: anna.manolova@ihna.ru

Поступила в редакцию 28.08.2023
После доработки 04.09.2023
Принята к публикации 05.09.2023

Аннотация

В настоящее время не вызывает сомнений, что целый ряд заболеваний психоневрологического спектра ассоциированы со стрессом в детском возрасте. Для изучения механизмов раннего стресса используют различные модели на лабораторных грызунах, позволяющие получить данные о механизмах патогенеза психопатологий, которые невозможно исследовать на людях. Для успешной трансляции данных необходимо, в частности, сравнение процессов нейроонтогенеза в момент предъявления воздействия и последующие периоды. В литературе немало сравнительных исследований, касающихся развития нейронов и нейрональных сетей, а также изменений гипоталамо-гипофизарно-надпочечниковой оси. В последние годы достоверно показано, что важным участником как развития мозга, так и его реакции на стресс являются глиальные клетки. Подкрепляется мнение о том, что именно микроглия и астроциты представляют наиболее перспективные мишени для терапевтического воздействия при стресс-зависимых заболеваниях. Тем не менее, до сих пор отсутствуют сравнительные аналитические исследования, охватывающие как стресс-реализующие системы, так и нейрональные и глиальные маркеры развития. Данный обзор, заполняющий этот пробел, может дать новый ракурс для рассмотрения проблем моделирования детского стресса и трансляции полученных данных. Представленный анализ суммирован в сравнительной схеме основных событий нейроонтогенеза лабораторных грызунов и человека в гипочувствительный к стрессу период, эта схема дополняет существующее представление о соответствии этапов развития мозга у лабораторных грызунов и человека. Представленные данные позволяют наметить точки роста и ставят новые вопросы перед исследователями стресса в раннем онтогенезе.

Ключевые слова: детский стресс, гипоталамо-гипофизарно-надпочечниковая ось, гипочувствительный к стрессу период, микроглия, астроглия

Список литературы

  1. Kronman H, Torres-Berrío A, Sidoli S, Issler O, Godino A, Ramakrishnan A, Mews P, Lardner CK, Parise EM, Walker DM, van der Zee YY, Browne CJ, Boyce BF, Neve R, Garcia BA, Shen L, Peña CJ, Nestler EJ (2021) Long-term behavioral and cell-type-specific molecular effects of early life stress are mediated by H3K79me2 dynamics in medium spiny neurons. Nat Neurosci 24: 667–676. https://doi.org/10.1038/s41593-021-00814-8

  2. Abbink MR, Kotah JM, Hoeijmakers L, Mak A, Yvon-Durocher G, van der Gaag B, Lucassen PJ, Korosi A (2020) Characterization of astrocytes throughout life in wildtype and APP/PS1 mice after early-life stress exposure. J Neuroinflammat 17: 91. https://doi.org/10.1186/s12974-020-01762-z

  3. Wu X, Li L, Zhou B, Wang J, Shao W (2023) Connexin 43 regulates astrocyte dysfunction and cognitive deficits in early life stress-treated mice. Exp Brain Res 241: 1207–1214. https://doi.org/10.1007/s00221-023-06587-9

  4. Osborne BF, Turano A, Caulfield JI, Schwarz JM (2019) Sex- and region-specific differences in microglia phenotype and characterization of the peripheral immune response following early-life infection in neonatal male and female rats. Neurosci Lett 692: 1–9. https://doi.org/10.1016/j.neulet.2018.10.044

  5. Bilbo SD (2010) Early-life infection is a vulnerability factor for aging-related glial alterations and cognitive decline. Neurobiol Learn Mem 94: 57–64. https://doi.org/10.1016/j.nlm.2010.04.001

  6. Reemst K, Kracht L, Kotah JM, Rahimian R, van Irsen AAS, Congrains Sotomayor G, Verboon LN, Brouwer N, Simard S, Turecki G, Mechawar N, Kooistra SM, Eggen BJL, Korosi A (2022) Early-life stress lastingly impacts microglial transcriptome and function under basal and immune-challenged conditions. Transl Psychiatry 12: 507. https://doi.org/10.1038/s41398-022-02265-6

  7. Breton JM, Barraza M, Hu KY, Frias SJ, Long KLP, Kaufer D (2021) Juvenile exposure to acute traumatic stress leads to long-lasting alterations in grey matter myelination in adult female but not male rats. Neurobiol Stress 14: 100319. https://doi.org/10.1016/j.ynstr.2021.100319

  8. Bolton JL, Short AK, Othy S, Kooiker CL, Shao M, Gunn BG, Beck J, Bai X, Law SM, Savage JC, Lambert JJ, Belelli D, Tremblay M-È, Cahalan MD, Baram TZ (2022) Early stress-induced impaired microglial pruning of excitatory synapses on immature CRH-expressing neurons provokes aberrant adult stress responses. Cell Rep 38: 110600. https://doi.org/10.1016/j.celrep.2022.110600

  9. Teissier A, Le Magueresse C, Olusakin J, Andrade da Costa BLS, De Stasi AM, Bacci A, Imamura Kawasawa Y, Vaidya VA, Gaspar P (2020) Early-life stress impairs postnatal oligodendrogenesis and adult emotional behaviour through activity-dependent mechanisms. Mol Psychiatry 25: 1159–1174. https://doi.org/10.1038/s41380-019-0493-2

  10. Rice D, Barone S (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108 Suppl 3: 511–533. https://doi.org/10.1289/ehp.00108s3511

  11. Fung SJ, Webster MJ, Sivagnanasundaram S, Duncan C, Elashoff M, Weickert CS (2010) Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. Am J Psychiatry 167: 1479–1488. https://doi.org/10.1176/appi.ajp.2010.09060784

  12. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3: 79–83. https://doi.org/10.1016/0378-3782(79)90022-7

  13. Clancy B, Kersh B, Hyde J, Darlington RB, Anand KJS, Finlay BL (2007) Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics 5: 79–94. https://doi.org/10.1385/ni:5:1:79

  14. Molnár Z, Clowry G (2012) Cerebral cortical development in rodents and primates. Prog Brain Res 195: 45–70. https://doi.org/10.1016/B978-0-444-53860-4.00003-9

  15. Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105: 7–17. https://doi.org/10.1016/s0306-4522(01)00171-3

  16. Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL (2013) Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci Off J Soc Neurosci 33: 7368–7383. https://doi.org/10.1523/JNEUROSCI.5746-12.2013

  17. Raevsky VV, Alexandrov LI, Vorobyeva AD, Golubeva TB, Korneeva EV, Kudriashov IE, Kudriashova IV, Pigareva ML, Sitnikova EYu, Stashkevitch IS (1997) Sensory information—The major factor of ontogeny. Neurosci Behav Physiol 27: 455–461. https://doi.org/10.1007/BF02462947

  18. Bengoetxea H, Ortuzar N, Bulnes S, Rico-Barrio I, Lafuente JV, Argandoña EG (2012) Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain. Neural Plast 2012: 305693. https://doi.org/10.1155/2012/305693

  19. Henschke JU, Oelschlegel AM, Angenstein F, Ohl FW, Goldschmidt J, Kanold PO, Budinger E (2018) Early sensory experience influences the development of multisensory thalamocortical and intracortical connections of primary sensory cortices. Brain Struct Funct 223: 1165–1190. https://doi.org/10.1007/s00429-017-1549-1

  20. Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6: 877–888. https://doi.org/10.1038/nrn1787

  21. Sibinga MS, Friedman CJ, Steisel IM, Sinnamon HM (1968) The effect of immobilization and sensory restriction on children with phenylketonuria. Pediatr Res 2: 371–377. https://doi.org/10.1203/00006450-196809000-00006

  22. Baek S-S, Jun T-W, Kim K-J, Shin M-S, Kang S-Y, Kim C-J (2012) Effects of postnatal treadmill exercise on apoptotic neuronal cell death and cell proliferation of maternal-separated rat pups. Brain Dev 34: 45–56. https://doi.org/10.1016/j.braindev.2011.01.011

  23. Gomes da Silva S, Arida RM (2015) Physical activity and brain development. Expert Rev Neurother 15: 1041–1051. https://doi.org/10.1586/14737175.2015.1077115

  24. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107: 1–16. https://doi.org/10.1016/j.pneurobio.2013.04.001

  25. Babikian T, Prins ML, Cai Y, Barkhoudarian G, Hartonian I, Hovda DA, Giza CC (2010) Molecular and physiological responses to juvenile traumatic brain injury: focus on growth and metabolism. Dev Neurosci 32: 431–441.https://doi.org/10.1159/000320667

  26. Herschkowitz N, Kagan J, Zilles K (1997) Neurobiological bases of behavioral development in the first year. Neuropediatrics 28: 296–306. https://doi.org/10.1055/s-2007-973720

  27. Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30: 718–729. https://doi.org/10.1016/j.neubiorev.2006.06.001

  28. Diamond A (1990) Rate of maturation of the hippocampus and the developmental progression of children’s performance on the delayed non-matching to sample and visual paired comparison tasks. Ann N Y Acad Sci 608: 394–426; discussion 426-433. https://doi.org/10.1111/j.1749-6632.1990.tb48904.x

  29. Rakic P, Nowakowski RS (1981) The time of origin of neurons in the hippocampal region of the rhesus monkey. J Comp Neurol 196: 99–128. https://doi.org/10.1002/cne.901960109

  30. Seress L, Ribak CE (1995) Postnatal development and synaptic connections of hilar mossy cells in the hippocampal dentate gyrus of rhesus monkeys. J Comp Neurol 355: 93–110. https://doi.org/10.1002/cne.903550111

  31. Arnold SE, Trojanowski JQ (1996) Human fetal hippocampal development: I. Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J Comp Neurol 367: 274–292. https://doi.org/10.1002/(SICI)1096-9861(19960401)367:2<274::AID-CNE9>3.0.CO;2-2

  32. Bayer SA (1980) Development of the hippocampal region in the rat I. Neurogenesis examined with3H-thymidine autoradiography. J Comp Neurol 190: 87–114. https://doi.org/10.1002/cne.901900107

  33. Huttenlocher PR (1979) Synaptic density in human frontal cortex – developmental changes and effects of aging. Brain Res 163: 195–205. https://doi.org/10.1016/0006-8993(79)90349-4

  34. Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387: 167–178. https://doi.org/10.1002/(sici)1096-9861(19971020)387:2<167::aid-cne1>3.0.co;2-z

  35. Huttenlocher PR, de Courten C, Garey LJ, Van der Loos H (1982) Synaptogenesis in human visual cortex–evidence for synapse elimination during normal development. Neurosci Lett 33: 247–52. https://doi.org/10.1016/0304-3940(82)90379-2

  36. Seress L, Abraham H (2001) Pre- and postnatal morphological development of the human hippocampal formation. In: Handbook of developmental cognitive neuroscience. MIT press. 936.

  37. Uylings HBM, Van Eden CG (1991) Chapter 3 Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. In: Progress in Brain Research. Elsevier. 31–62.

  38. De Felipe J, Marco P, Fairén A, Jones EG (1997) Inhibitory synaptogenesis in mouse somatosensory cortex. Cereb Cortex N Y N 1991 7: 619–634. https://doi.org/10.1093/cercor/7.7.619

  39. Micheva KD, Beaulieu C (1996) Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J Comp Neurol 373: 340–354. https://doi.org/10.1002/(SICI)1096-9861(19960923)373:3<340::AID-CNE3>3.0.CO;2-2

  40. Crain B, Cotman C, Taylor D, Lynch G (1973) A quantitative electron microscopic study of synaptogenesis in the dentate gyrus of the rat. Brain Res 63: 195–204. https://doi.org/10.1016/0006-8993(73)90088-7

  41. Ribak CE, Seress L, Amaral DG (1985) The development, ultrastructure and synaptic connections of the mossy cells of the dentate gyrus. J Neurocytol 14: 835–857. https://doi.org/10.1007/BF01170832

  42. Horii-Hayashi N, Sasagawa T, Matsunaga W, Nishi M (2015) Development and Structural Variety of the Chondroitin Sulfate Proteoglycans-Contained Extracellular Matrix in the Mouse Brain. Neural Plast 2015: 256389. https://doi.org/10.1155/2015/256389

  43. Rogers SL, Rankin-Gee E, Risbud RM, Porter BE, Marsh ED (2018) Normal Development of the Perineuronal Net in Humans; In Patients with and without Epilepsy. Neuroscience 384: 350–360. https://doi.org/10.1016/j.neuroscience.2018.05.039

  44. Mauney SA, Athanas KM, Pantazopoulos H, Shaskan N, Passeri E, Berretta S, Woo T-UW (2013) Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol Psychiatry 74: 427–435. https://doi.org/10.1016/j.biopsych.2013.05.007

  45. Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E (2012) The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 18: 467–486. https://doi.org/10.1177/1073858412438697

  46. Tyzio R, Holmes GL, Ben-Ari Y, Khazipov R (2007) Timing of the developmental switch in GABA(A) mediated signaling from excitation to inhibition in CA3 rat hippocampus using gramicidin perforated patch and extracellular recordings. Epilepsia 48 Suppl 5: 96–105. https://doi.org/10.1111/j.1528-1167.2007.01295.x

  47. Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61: 820–838. https://doi.org/10.1016/j.neuron.2009.03.003

  48. Ben-Ari Y, Gaiarsa J-L, Tyzio R, Khazipov R (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87: 1215–1284. https://doi.org/10.1152/physrev.00017.2006

  49. Dzhala VI, Talos DM, Sdrulla DA, Brumback AC, Mathews GC, Benke TA, Delpire E, Jensen FE, Staley KJ (2005) NKCC1 transporter facilitates seizures in the developing brain. Nat Med 11: 1205–1213. https://doi.org/10.1038/nm1301

  50. Pont-Lezica L, Beumer W, Colasse S, Drexhage H, Versnel M, Bessis A (2014) Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation. Eur J Neurosci 39: 1551–1557. https://doi.org/10.1111/ejn.12508

  51. Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, Yamashita T (2013) Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 16: 543–551. https://doi.org/10.1038/nn.3358

  52. Logiacco F, Xia P, Georgiev SV, Franconi C, Chang Y-J, Ugursu B, Sporbert A, Kühn R, Kettenmann H, Semtner M (2021) Microglia sense neuronal activity via GABA in the early postnatal hippocampus. Cell Rep 37: 110128. https://doi.org/10.1016/j.celrep.2021.110128

  53. Méndez-Salcido FA, Torres-Flores MI, Ordaz B, Peña-Ortega F (2022) Abnormal innate and learned behavior induced by neuron-microglia miscommunication is related to CA3 reconfiguration. Glia 70: 1630–1651. https://doi.org/10.1002/glia.24185

  54. Bertot C, Groc L, Avignone E (2019) Role of CX3CR1 Signaling on the Maturation of GABAergic Transmission and Neuronal Network Activity in the Neonate Hippocampus. Neuroscience 406: 186–201. https://doi.org/10.1016/j.neuroscience.2019.03.006

  55. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14: 311–321. https://doi.org/10.1038/nrn3484

  56. Morel L, Higashimori H, Tolman M, Yang Y (2014) VGluT1+ Neuronal Glutamatergic Signaling Regulates Postnatal Developmental Maturation of Cortical Protoplasmic Astroglia. J Neurosci 34: 10950–10962. https://doi.org/10.1523/JNEUROSCI.1167-14.2014

  57. Lana D, Ugolini F, Nosi D, Wenk GL, Giovannini MG (2021) The Emerging Role of the Interplay Among Astrocytes, Microglia, and Neurons in the Hippocampus in Health and Disease. Front Aging Neurosci 13: 651973. https://doi.org/10.3389/fnagi.2021.651973

  58. McNamara NB, Munro DAD, Bestard-Cuche N, Uyeda A, Bogie JFJ, Hoffmann A, Holloway RK, Molina-Gonzalez I, Askew KE, Mitchell S, Mungall W, Dodds M, Dittmayer C, Moss J, Rose J, Szymkowiak S, Amann L, McColl BW, Prinz M, Spires-Jones TL, Stenzel W, Horsburgh K, Hendriks JJA, Pridans C, Muramatsu R, Williams A, Priller J, Miron VE (2023) Microglia regulate central nervous system myelin growth and integrity. Nature 613: 120–129. https://doi.org/10.1038/s41586-022-05534-y

  59. Aniol V, Manolova A, Gulyaeva N (2022) Early Life Events and Maturation of the Dentate Gyrus: Implications for Neurons and Glial Cells. Int J Mol Sci 23. https://doi.org/10.3390/ijms23084261

  60. Lenz KM, Nelson LH (2018) Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function. Front Immunol 9: 698. https://doi.org/10.3389/fimmu.2018.00698

  61. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, Mulinyawe SB, Bohlen CJ, Adil A, Tucker A, Weissman IL, Chang EF, Li G, Grant GA, Hayden Gephart MG, Barres BA (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 113: E1738-E1746. https://doi.org/10.1073/pnas.1525528113

  62. Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, Ben-Yehuda H, David E, Zelada González F, Perrin P, Keren-Shaul H, Gury M, Lara-Astaiso D, Thaiss CA, Cohen M, Bahar Halpern K, Baruch K, Deczkowska A, Lorenzo-Vivas E, Itzkovitz S, Elinav E, Sieweke MH, Schwartz M, Amit I (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science 353: aad8670. https://doi.org/10.1126/science.aad8670

  63. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333: 1456–1458. https://doi.org/10.1126/science.1202529

  64. Stepanichev MY, Goryakina T, Manolova A, Lazareva N, Kvichanskii A, Tretyakova L, Volobueva M, Gulyaeva N (2021) Neonatal proinflammatory challenge evokes a microglial response and affects the ratio between subtypes of GABAergic interneurons in the hippocampus of juvenile rats: sex-dependent and sex-independent effects. Brain Struct Funct 226: 563–574. https://doi.org/10.1007/s00429-020-02199-z

  65. Lenz KM, Nugent BM, Haliyur R, McCarthy MM (2013) Microglia are essential to masculinization of brain and behavior. J Neurosci Off J Soc Neurosci 33: 2761–2772. https://doi.org/10.1523/JNEUROSCI.1268-12.2013

  66. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117: 145–152. https://doi.org/10.1016/s0165-3806(99)00113-3

  67. Kostović I, Judas M (2002) Correlation between the sequential ingrowth of afferents and transient patterns of cortical lamination in preterm infants. Anat Rec 267: 1–6. https://doi.org/10.1002/ar.10069

  68. Esiri MM, al Izzi MS, Reading MC (1991) Macrophages, microglial cells, and HLA-DR antigens in fetal and infant brain. J Clin Pathol 44: 102–106. https://doi.org/10.1136/jcp.44.2.102

  69. Billiards SS, Haynes RL, Folkerth RD, Trachtenberg FL, Liu LG, Volpe JJ, Kinney HC (2006) Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 497: 199–208. https://doi.org/10.1002/cne.20991

  70. Ambrose N, Rodriguez M, Waters KA, Machaalani R (2020) Microglia in the human infant brain and factors that affect expression. Brain Behav Immun – Health 7: 100117. https://doi.org/10.1016/j.bbih.2020.100117

  71. Burns-Naas LA, Hastings KL, Ladics GS, Makris SL, Parker GA, Holsapple MP (2008) What’s So Special about the Developing Immune System? Int J Toxicol 27: 223–254. https://doi.org/10.1080/10915810801978110

  72. Мальцева НВ, Волчегорский ИА, Шемяков СЕ (2016) Возрастные изменения морфометрических характеристик нейронов, клеток микроглии и активность ферментов антиоксидантной защиты в коре головного мозга человека на начальных этапах постнатального онтогенеза. Морфол ведом 24(1): 112–115. [Maltseva NV, Volchegorskii IA, Shemyakov SE (2016) Age changes of morphometric characteristics of neurons, microglia cells and antioxidant protection enzymes activity in human cortex at the initial stages of postnatal ontogenesis. Morphol newslett 24(1): 112–115. (In Russ)].https://doi.org/10.20340/mv-mn.2016.24(1)

  73. Su Y, Zhou Y, Bennett ML, Li S, Carceles-Cordon M, Lu L, Huh S, Jimenez-Cyrus D, Kennedy BC, Kessler SK, Viaene AN, Helbig I, Gu X, Kleinman JE, Hyde TM, Weinberger DR, Nauen DW, Song H, Ming G-L (2022) A single-cell transcriptome atlas of glial diversity in the human hippocampus across the postnatal lifespan. Cell Stem Cell 29: 1594-1610.e8. https://doi.org/10.1016/j.stem.2022.09.010

  74. Ge W-P, Miyawaki A, Gage FH, Jan YN, Jan LY (2012) Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484: 376–380. https://doi.org/10.1038/nature10959

  75. Engelhardt B (2003) Development of the blood-brain barrier. Cell Tissue Res 314: 119–129. https://doi.org/10.1007/s00441-003-0751-z

  76. Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM, Bergles DE, Rothstein JD (2007) Variations in Promoter Activity Reveal a Differential Expression and Physiology of Glutamate Transporters by Glia in the Developing and Mature CNS. J Neurosci 27: 6607–6619. https://doi.org/10.1523/JNEUROSCI.0790-07.2007

  77. Schools GP, Kimelberg HK (1999) mGluR3 and mGluR5 are the predominant metabotropic glutamate receptor mRNAs expressed in hippocampal astrocytes acutely isolated from young rats. J Neurosci Res 58: 533–543. https://doi.org/10.1002/(SICI)1097-4547(19991115)58:4<533::AID-JNR6>3.0.CO;2-G

  78. Christopherson KS, Ullian EM, Stokes CCA, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120: 421–433. https://doi.org/10.1016/j.cell.2004.12.020

  79. Yamamoto T, Vukelic J, Hertzberg EL, Nagy JI (1992) Differential anatomical and cellular patterns of connexin43 expression during postnatal development of rat brain. Dev Brain Res 66: 165–180. https://doi.org/10.1016/0165-3806(92)90077-A

  80. Bushong EA, Martone ME, Ellisman MH (2004) Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 22: 73–86. https://doi.org/10.1016/j.ijdevneu.2003.12.008

  81. Malik S, Vinukonda G, Vose LR, Diamond D, Bhimavarapu BBR, Hu F, Zia MT, Hevner R, Zecevic N, Ballabh P (2013) Neurogenesis Continues in the Third Trimester of Pregnancy and Is Suppressed by Premature Birth. J Neurosci 33: 411–423. https://doi.org/10.1523/JNEUROSCI.4445-12.2013

  82. Degl’Innocenti E, Dell’Anno MT (2023) Human and mouse cortical astrocytes: a comparative view from development to morphological and functional characterization. Front Neuroanat 17: 1130729. https://doi.org/10.3389/fnana.2023.1130729

  83. Sturrock RR (1986) Postnatal ontogenesis of astrocytes. In: Astrocytes Pt 1: Development, Morphology, and Regional Specialization of Astrocytes. Elsevier. 2012. 394.

  84. Мальцева НВ, Волчегорский ИА, Шемяков СЕ (2015) Взаимосвязь активности моноаминоксидазы Б и количества астроцитов в развивающемся мозге человека. Морфол ведом 4: 9–14. [Maltseva NV, Volchegorskii IA, Shemyakov SE (2015) Correlation of monoamine oxidase b activity and number of astrocytes in the developing human brain. Morphol Newslett 23(4): 9–14. (In Russ)]. https://doi.org/10.20340/mv-mn.2015.0(4):9-14

  85. Nedergaard M, Ransom B, Goldman S (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26: 523–530. https://doi.org/10.1016/j.tins.2003.08.008

  86. Oberheim NA, Takano T, Han X, He W, Lin JHC, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely Hominid Features of Adult Human Astrocytes. J Neurosci 29: 3276–3287. https://doi.org/10.1523/JNEUROSCI.4707-08.2009

  87. Vasile F, Dossi E, Rouach N (2017) Human astrocytes: structure and functions in the healthy brain. Brain Struct Funct 222: 2017–2029. https://doi.org/10.1007/s00429-017-1383-5

  88. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK, Edwards MSB, Li G, Duncan JA, Cheshier SH, Shuer LM, Chang EF, Grant GA, Gephart MGH, Barres BA (2016) Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron 89: 37–53. https://doi.org/10.1016/j.neuron.2015.11.013

  89. Li J, Pan L, Pembroke WG, Rexach JE, Godoy MI, Condro MC, Alvarado AG, Harteni M, Chen Y-W, Stiles L, Chen AY, Wanner IB, Yang X, Goldman SA, Geschwind DH, Kornblum HI, Zhang Y (2021) Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes. Nat Commun 12: 3958. https://doi.org/10.1038/s41467-021-24232-3

  90. Preuss TM, Cáceres M, Oldham MC, Geschwind DH (2004) Human brain evolution: insights from microarrays. Nat Rev Genet 5: 850–860. https://doi.org/10.1038/nrg1469

  91. Wiggins RC (1986) Myelination: a critical stage in development. Neurotoxicology 7: 103–120.

  92. Yeung MSY, Zdunek S, Bergmann O, Bernard S, Salehpour M, Alkass K, Perl S, Tisdale J, Possnert G, Brundin L, Druid H, Frisén J (2014) Dynamics of Oligodendrocyte Generation and Myelination in the Human Brain. Cell 159: 766–774. https://doi.org/10.1016/j.cell.2014.10.011

  93. Chen P, Cai W, Wang L, Deng Q (2008) A morphological and electrophysiological study on the postnatal development of oligodendrocyte precursor cells in the rat brain. Brain Res 1243: 27–37. https://doi.org/10.1016/j.brainres.2008.09.029

  94. Trapp BD, Nishiyama A, Cheng D, Macklin W (1997) Differentiation and death of premyelinating oligodendrocytes in developing rodent brain. J Cell Biol 137: 459–468. https://doi.org/10.1083/jcb.137.2.459

  95. Craig A, Ling Luo N, Beardsley DJ, Wingate-Pearse N, Walker DW, Hohimer AR, Back SA (2003) Quantitative analysis of perinatal rodent oligodendrocyte lineage progression and its correlation with human. Exp Neurol 181: 231–240. https://doi.org/10.1016/s0014-4886(03)00032-3

  96. Dean JM, Moravec MD, Grafe M, Abend N, Ren J, Gong X, Volpe JJ, Jensen FE, Hohimer AR, Back SA (2011) Strain-specific differences in perinatal rodent oligodendrocyte lineage progression and its correlation with human. Dev Neurosci 33: 251–260. https://doi.org/10.1159/000327242

  97. M. Vázquez D (1998) Stress and the developing limbic–hypothalamic–pituitary–adrenal axis. Psychoneuroendocrinology 23: 663–700. https://doi.org/10.1016/S0306-4530(98)00029-8

  98. Sapolsky R, Meaney M (1986) Maturation of the adrenocortical stress response: Neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Res 396: 65–76. https://doi.org/10.1016/S0006-8993(86)80190-1

  99. Kumar S, Cole R, Chiappelli F, de Vellis J (1989) Differential regulation of oligodendrocyte markers by glucocorticoids: post-transcriptional regulation of both proteolipid protein and myelin basic protein and transcriptional regulation of glycerol phosphate dehydrogenase. Proc Natl Acad Sci U S A 86: 6807–6811. https://doi.org/10.1073/pnas.86.17.6807

  100. McLennan IS, Hill CE, Hendry IA (1980) Glucocorticosteroids modulate transmitter choice in developing superior cervical ganglion. Nature 283: 206–207. https://doi.org/10.1038/283206a0

  101. Lockwood CJ, Radunovic N, Nastic D, Petkovic S, Aigner S, Berkowitz GS (1996) Corticotropin-releasing hormone and related pituitary-adrenal axis hormones in fetal and maternal blood during the second half of pregnancy. J Perinat Med 24: 243–251. https://doi.org/10.1515/jpme.1996.24.3.243

  102. Murphy BE (1982) Human fetal serum cortisol levels related to gestational age: evidence of a midgestational fall and a steep late gestational rise, independent of sex or mode of delivery. Am J Obstet Gynecol 144: 276–282. https://doi.org/10.1016/0002-9378(82)90579-8

  103. Schoof E, Girstl M, Frobenius W, Kirschbaum M, Repp R, Knerr I, Rascher W, Dötsch J (2001) Course of placental 11beta-hydroxysteroid dehydrogenase type 2 and 15-hydroxyprostaglandin dehydrogenase mRNA expression during human gestation. Eur J Endocrinol 145: 187–192. https://doi.org/10.1530/eje.0.1450187

  104. Murphy VE, Clifton VL (2003) Alterations in human placental 11beta-hydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour. Placenta 24: 739–744. https://doi.org/10.1016/s0143-4004(03)00103-6

  105. Howland MA, Sandman CA, Glynn LM (2017) Developmental origins of the human hypothalamic-pituitary-adrenal axis. Expert Rev Endocrinol Metab 12: 321–339. https://doi.org/10.1080/17446651.2017.1356222

  106. Jansen J, Beijers R, Riksen-Walraven M, de Weerth C (2010) Cortisol reactivity in young infants. Psychoneuroendocrinology 35: 329–338. https://doi.org/10.1016/j.psyneuen.2009.07.008

  107. Gunnar MR, Donzella B (2002) Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology 27: 199–220. https://doi.org/10.1016/s0306-4530(01)00045-2

  108. Schwartz EB, Granger DA, Susman EJ, Gunnar MR, Laird B (1998) Assessing salivary cortisol in studies of child development. Child Dev 69: 1503–1513.

  109. Kloet ER de, Oitzl MS (2003) Who cares for a stressed brain? The mother, the kid or both? Neurobiol Aging 24: S61–S65. https://doi.org/10.1016/S0197-4580(03)00057-5

  110. Davis EP, Donzella B, Krueger WK, Gunnar MR (1999) The start of a new school year: Individual differences in salivary cortisol response in relation to child temperament. Dev Psychobiol 35: 188–196. https://doi.org/10.1002/(SICI)1098-2302(199911)35:3<188::AID-DEV3>3.0.CO;2-K

  111. Hessl D, Dawson G, Frey K, Panagiotides H, Self H, Yamada E, Osterling J (1998) A longitudinal study of children of depressed mothers: psychobiological findings related to stress. In: Hann DM, Huffman LC, Lederhendler KK, Minecke D (Eds.) Advancing Research on Developmental Plasticity: Integrating the Behavioral Sciences and the Neurosciences of Mental Health. National Institutes of Mental Health. Bethesda. MD. 256.

  112. Gunnar MR, Vazquez DM (2001) Low cortisol and a flattening of expected daytime rhythm: potential indices of risk in human development. Dev Psychopathol 13: 515–538. https://doi.org/10.1017/s0954579401003066

Дополнительные материалы отсутствуют.