Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 9, стр. 1199-1216

Анализ поведения и плотности нейронов в головном мозге мышей B6.Cg-Tg(Prnp-SNCA*A53T)23Mkle/J-модели болезни Паркинсона

И. Н. Рожкова 1, С. В. Окотруб 1, Е. Ю. Брусенцев 1, Т. А. Рахманова 12, Д. А. Лебедева 12, В. С. Козенева 12, Н. В. Хоцкин 1, С. Я. Амстиславский 1*

1 Институт цитологии и генетики Сибирского отделения Российской академии наук
Новосибирск, Россия

2 Новосибирский национальный исследовательский государственный университет
Новосибирск, Россия

* E-mail: amstis@yandex.ru

Поступила в редакцию 05.06.2023
После доработки 13.07.2023
Принята к публикации 21.07.2023

Аннотация

Болезнь Паркинсона (БП) является прогрессирующей возрастной нейродегенеративной патологией центральной нервной системы, при которой происходит избирательная потеря дофаминергических нейронов нигростриарного пути и для которой характерно наличие специфических включений (телец Леви) в дофаминовых нейронах. Для изучения механизмов возникновения данной патологии и для поиска возможных путей ее коррекции созданы генетические модели БП на мышах. Трансгенные мыши линии B6.Cg-Tg(Prnp-SNCA*A53T)23Mkle/J (далее в тексте B6.Cg-Tg) имеют мутацию A53T в гене альфа-синуклеина человека и представляют собой модель БП. Целью данной работы было исследование локомоторной активности и уровня тревожности, а также плотности нейронов в головном мозге самцов мышей линии B6.Cg-Tg в возрасте шести месяцев. В качестве контроля были использованы мыши C57BL/6J (дикий тип) того же пола и возраста. Полученные результаты показывают, что для мышей B6.Cg-Tg характерна высокая двигательная активность и низкая тревожность. Наряду с этим у них было обнаружено избирательное снижение плотности нейронов в субвентрикулярной зоне, черной субстанции, а также зонах СА1, СА3, СА4 и гранулярном слое зубчатой извилины гиппокампа. Таким образом, мыши линии B6.Cg-Tg в возрасте шести месяцев лишь частично соответствуют основным патофизиологическим признакам БП, таким как снижение плотности нейронов в черной субстанции, а также в СА1 и СА3 зонах гиппокампа. Однако при этом у них отсутствует брадикинезия и тревожность.

Ключевые слова: мыши C57BL/6J, B6.Cg-Tg(Prnp-SNCA*A53T)23Mkle/J, болезнь Паркинсона, двигательная активность, тревожность, головной мозг, плотность нейронов

Список литературы

  1. Yun JW, Ahn JB, Kang BC (2015) Modeling Parkinson’s disease in the common marmoset (Callithrix jacchus): overview of models, methods, and animal care. Lab Anim Res 31: 155–165. https://doi.org/10.5625/lar.2015.31.4.155

  2. Goswami P, Joshi N, Singh S (2017) Neurodegenerative signaling factors and mechanisms in Parkinson’s pathology. Toxicol In Vitro 43: 104–112. https://doi.org/10.1016/j.tiv.2017.06.008

  3. Crotty GF, Schwarzschild MA (2022) What to test in parkinson disease prevention trials? Repurposed, low-risk, and gene-targeted drugs. Neurology 99: 34–41. https://doi.org/10.1212/WNL.0000000000200238

  4. Crotty GF, Ascherio A, Schwarzschild MA (2017) Targeting urate to reduce oxidative stress in Parkinson disease. Exp Neurol 298: 210–224. https://doi.org/10.1016/j.expneurol.2017.06.017

  5. Braak H, Rub U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm (Vienna) 110: 517–536. https://doi.org/10.1007/s00702-002-0808-2

  6. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047. https://doi.org/10.1126/science.276.5321.2045

  7. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8: 2804–2815. https://doi.org/10.1523/JNEUROSCI.08-08-02804.1988

  8. Wong YC, Krainc D (2017) α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med 23: 1–13. https://doi.org/10.1038/nm.4269

  9. Albers JA, Chand P, Anch AM (2017) Multifactorial sleep disturbance in Parkinson’s disease. Sleep Med 35: 41–48. https://doi.org/10.1016/j.sleep.2017.03.026

  10. Flores-Cuadrado A, Ubeda-Banon I, Saiz-Sanchez D, de la Rosa-Prieto C, Martinez-Marcos A (2016) Hippocampal α-synuclein and interneurons in Parkinson’s disease: Data from human and mouse models. Mov Disord 31: 979–988. https://doi.org/10.1002/mds.26586

  11. Villar-Conde S, Astillero-Lopez V, Gonzalez-Rodriguez M, Villanueva-Anguita P, Saiz-Sanchez D, Martinez-Marcos A, Flores-Cuadrado A, Ubeda-Banon I (2021) The human hippocampus in Parkinson’s disease: An Integrative Stereological and Proteomic Study. J Parkinsons Dis 11: 1345–1365. https://doi.org/10.3233/JPD-202465

  12. Prakash KG, Bannur BM, Chavan MD, Saniya K, Sailesh KS, Rajagopalan A (2016) Neuroanatomical changes in Parkinson’s disease in relation to cognition: An update. J Adv Pharm Technol Res 7: 123–126. https://doi.org/10.4103/2231-4040.191416

  13. Kang DZ, Chen FX, Chen FY,Liu Y, Wu G, Yu LH, Lin YX, Lin ZY (2016) Altered regional homogeneity of prefrontal cortex in Parkinson’s disease with mild cognitive impairment. Chin Neurosurg J l2: 10. https://doi.org/10.1186/s41016-016-0028-5

  14. Biundo R, Formento-Dojot P, Facchini S, Vallelunga A, Ghezzo L, Foscolo L, Meneghello F, Antonini A (2011) Brain volume changes in Parkinson’s disease and their relationship with cognitive and behavioural abnormalities. J Neurol Sci 310: 64–69. https://doi.org/10.1016/j.jns.2011.08.001

  15. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag A-E, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 23: 6587–6596. https://doi.org/10.1038/nrdp.2017.13

  16. Lee SH, Kim SS, Tae WS, Lee SY, Choi JW, Koh SB, Kwon DY (2011) Regional volume analysis of the Parkinson disease brain in early disease stage: gray matter, white matter, striatum, and thalamus. AJNR Am J Neuroradiol 32: 682–687. https://doi.org/10.3174/ajnr.A2372

  17. Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins GT, Counsell C, Giladi N, Holloway RG, Moore CG, Wenning GK, Yahr MD, Seidl L (2004) Movement disorder society task force on rating scales for Parkinson’s disease. Movement disorder society task force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord 19: 1020–1028. https://doi.org/10.1002/mds.20213

  18. Das T, Hwang JJ, Poston KL (2019) Episodic recognition memory and the hippocampus in Parkinson’s disease: A review. Cortex 113: 191–209. https://doi.org/10.1016/j.cortex.2018.11.021

  19. Pagano G, Niccolini F, Politis M (2016) Imaging in Parkinson’s disease. Clin Med (Lond) 16: 371–375. https://doi.org/10.7861/clinmedicine.16-4-371

  20. Bae YJ, Kim JM, Sohn CH, Choi JH, Choi BS, Song YS, Nam Y, Cho SJ, Jeon B, Kim JH (2021) Imaging the substantia nigra in Parkinson disease and other Parkinsonian syndromes. Radiology 300: 260–278. https://doi.org/10.1148/radiol.2021203341

  21. Adamowicz DH, Roy S, Salmon DP, Galasko DR, Hansen LA, Masliah E, Gage FH (2017) Hippocampal α-synuclein in dementia with Lewy bodies contributes to memory impairment and is consistent with spread of pathology. J Neurosci 37: 1675–1684. https://doi.org/10.1523/JNEUROSCI.3047-16.2016

  22. Stav AL, Johansen KK, Auning E, Kalheim LF, Selnes P, Bjørnerud A, Hessen E, Aarsland D, Fladby T (2016) Hippocampal subfield atrophy in relation to cerebrospinal fluid biomarkers and cognition in early Parkinson’s disease: a cross-sectional study. NPJ Parkinsons Dis 2: 15030. https://doi.org/10.1038/npjparkd.2015.30

  23. Foo H, Mak E, Chander RJ, Ng A, Au WL, Sitoh YY, Tan LC, Kandiah N (2016) Associations of hippocampal subfields in the progression of cognitive decline related to Parkinson’s disease. Neuroimage Clin 14: 37–42. https://doi.org/10.1016/j.nicl.2016.12.008

  24. Григорян ГА, Базян АС (2007) Экспериментальные модели болезни Паркинсона на животных. Успехи физиол наук 38: 80–88. [Grigoryan GA, Bazyan AS (2007) The experimental models of Parkinson’s disease in animals. Advanc Physiol Sci 38: 80–88. (In Russ)].

  25. Siani F, Greco R, Levandis G, Ghezzi C, Daviddi F, Demartini C, Vegeto E, Fuzzati-Armentero MT, Blandini F (2017) Influence of estrogen modulation on glia activation in a murine model of Parkinson’s disease. Front Neurosci 11: 306. https://doi.org/10.3389/fnins.2017.00306

  26. Tang H, Gao Y, Zhang Q, Nie K, Zhu R, Gao L, Feng S, Wang L, Zhao J, Huang Z, Zhang Y, Wang L (2017) Chronic cerebral hypoperfusion independently exacerbates cognitive impairment within the pathopoiesis of Parkinson’s disease via microvascular pathologys. Behav Brain Res 333: 286–294. https://doi.org/10.1016/j.bbr.2017.05.061

  27. Gomez-Isla T, Irizarry MC, Mariash A, Cheung B, Soto O, Schrump S, Sondel J, Kotilinek L, Day J, Schwarzschild MA, Cha JH, Newell K, Miller DW, Ueda K, Young AB, Hyman BT, Ashe KH (2003) Motor dysfunction and gliosis with preserved dopaminergic markers in human alpha-synuclein A30P transgenic mice. Neurobiol Aging 24: 245–258. https://doi.org/10.1016/s0197-4580(02)00091-x

  28. Unger EL, Eve DJ, Perez XA, Reichenbach DK, Xu Y, Lee MK, Andrews AM (2006) Locomotor hyperactivity and alterations in dopamine neurotransmission are associated with overexpression of A53T mutant human alpha-synuclein in mice. Neurobiol Dis 21: 431–443. https://doi.org/10.1016/j.nbd.2005.08.005

  29. Pupyshev AB, Korolenko TA, Akopyan AA, Amstislavskaya TG, Tikhonova MA (2018) Suppression of autophagy in the brain of transgenic mice with overexpression of A53T-mutant α-synuclein as an early event at synucleinopathy progression. Neurosci Lett 672: 140–144. https://doi.org/10.1016/j.neulet.2017.12.001

  30. Korolenko TA, Shintyapina AB, Belichenko VM, Pupyshev AB, Akopyan AA, Fedoseeva LA, Russkikh GS, Vavilin VA, Tenditnik MV, Lin C-L, Amstislavskaya TG, Tikhonova MA (2020) Early Parkinson’s disease-like pathology in a transgenic mouse model involves a decreased Cst3 mRNA expression but not neuroinflammatory response in the brain. Med Univer 3: 66–78. https://doi.org/10.2478/medu-2020-0008

  31. Taguchi T, Ikuno M, Hondo M, Parajuli LK, Taguchi K, Ueda J, Sawamura M, Okuda S, Nakanishi E, Hara J, Uemura N, Hatanaka Y, Ayaki T, Matsuzawa S, Tanaka M, El-Agnaf OMA, Koike M, Yanagisawa M, Uemura MT, Yamakado H, Takahashi R (2020) α-SynucleinBAC transgenic mice exhibit RBD-like behaviour and hyposmia: a prodromal Parkinson’s disease model. Brain 143: 249–265. https://doi.org/10.1093/brain/awz380

  32. Huang Y, Liu Z, Li N, Tian C, Yang H, Huo Y, Li Y, Zhang J, Yu Z (2022) Parkinson’s disease derived exosomes aggravate neuropathology in SNCA*A53T Mice. Ann Neurol 92: 230–245. https://doi.org/10.1002/ana.26421

  33. Karikari AA, McFleder RL, Ribechini E, Blum R, Bruttel V, Knorr S, Gehmeyr M, Volkmann J, Brotchie JM, Ahsan F, Haack B, Monoranu CM, Keber U, Yeghiazaryan R, Pagenstecher A, Heckel T, Bischler T, Wischhusen J, Koprich JB, Lutz MB, Ip CW (2022) Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson’s disease mice. Brain Behav Immun 101: 194–210. https://doi.org/10.1016/j.bbi.2022.01.007

  34. Wang Y, Sun Z, Du S, Wei H, Li X, Li X, Shen J, Chen X, Cai Z (2022) The increase of α-synuclein and alterations of dynein in A53T transgenic and aging mouse. J Clin Neurosci 96: 154–162. https://doi.org/10.1016/j.jocn.2021.11.002

  35. Zhang Y, Wu Q, Ren Y, Zhang Y, Feng L (2022) A53T α-synuclein induces neurogenesis impairment and cognitive dysfunction in line M83 transgenic mice and reduces the proliferation of embryonic neural stem cells. Brain Res Bull 182: 118–129. https://doi.org/10.1016/j.brainresbull.2022.02.010

  36. Zheng M, Liu Y, Xiao Z, Jiao L, Lin X (2022) Tau knockout and α-synuclein A53T synergy modulated parvalbumin-positive neurons degeneration staging in substantia nigra pars reticulata of Parkinson’s disease-liked model. Front Aging Neurosci 13: 784665. https://doi.org/10.3389/fnagi.2021.784665

  37. Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson’s disease. Neuron 66: 646–661. https://doi.org/10.1016/j.neuron.2010.04.034

  38. Oaks AW, Frankfurt M, Finkelstein DI, Sidhu A (2013) Age-dependent effects of A53T alpha-synuclein on behavior and dopaminergic function. PLoS One 8: e60378. https://doi.org/10.1371/journal.pone.0060378

  39. Liu Y, Yuan YH, Sun JD, Li J, Li ZP, Chen NH (2014) Nigrostriatal dynein changes in A53T alpha-synuclein transgenic mice. F1000Res 3: 68. https://doi.org/10.12688/f1000research.3507.1

  40. Zhang Y, Wu Q, Zhang L, Wang Q, Yang Z, Liu J, Feng L (2019) Caffeic acid reduces A53T α‑synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson’s disease. Pharmacol Res 150: 104538. https://doi.org/10.1016/j.phrs.2019.104538

  41. Park HJ, Zhao TT, Kim SH, Lee CK, Hwang BY, Lee KE, Lee MK (2020) Ethanol extract from Gynostemmapentaphyllum ameliorates dopaminergic neuronal cell death in transgenic mice expressing mutant A53T human alpha-synuclein. Neural Regen Res 15: 361–368. https://doi.org/10.4103/1673-5374.265557

  42. https://www.jax.org/strain/006823

  43. Mograbi KM, de Castro AC, de Oliveira JA, Sales PJ, Covolan L, Del Bel EA, de Souza AS (2017) Effects of GABAa receptor antagonists on motor behavior in pharmacological Parkinson’s disease model in mice. Physiol Rep 5: e13081. https://doi.org/10.14814/phy2.13081

  44. Langley MR, Ghaisas S, Palanisamy BN, Ay M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG (2021) Characterization of nonmotor behavioral impairments and their neurochemical mechanisms in the MitoPark mouse model of progressive neurodegeneration in Parkinson’s disease. Exp Neurol 341: 113716. https://doi.org/10.1016/j.expneurol.2021.113716

  45. George S, van den Buuse M, San Mok S, Masters CL, Li QX, Culvenor JG (2008) Alpha-synuclein transgenic mice exhibit reduced anxiety-like behaviour. Exp Neurol 210: 788–792. https://doi.org/10.1016/j.expneurol.2007.12.017

  46. Graham DR, Sidhu A (2010) Mice expressing the A53T mutant form of human alpha-synuclein exhibit hyperactivity and reduced anxiety-like behavior. J Neurosci Res 88: 1777–1183. https://doi.org/10.1002/jnr.22331

  47. Oh SH, Lee SC, Kim DY, Kim HN, Shin JY, Ye BS, Lee PH (2017) Mesenchymal stem cells stabilize axonal transports for autophagic clearance of α-synuclein in parkinsonian models. Stem Cells 35: 1934–1947. https://doi.org/10.1002/stem.2650

  48. Lenka A, Ingalhalikar M, Shah A, Saini J, Arumugham SS, Hegde S, George L, Reddy V, Reddy YCJ, Yadav R, Pal PK (2018) Hippocampal subfield atrophy in patients with Parkinson’s disease and psychosis. J Neural Transm (Vienna) 125: 1361–1372. https://doi.org/10.1007/s00702-018-1891-3

  49. DeFlitch L, Gonzalez-Fernandez E, Crawley I, Kang SH (2022) Age and Alzheimer’s disease-related oligodendrocyte changes in hippocampal subregions. Front Cell Neurosci 16: 847097. https://doi.org/10.3389/fncel.2022.847097

  50. Schmitt A, Tatsch L, Vollhardt A, Schneider-Axmann T, Raabe FJ, Roell L, Heinsen H, Hof PR, Falkai P, Schmitz C (2022) Decreased oligodendrocyte number in hippocampal subfield CA4 in schizophrenia: a replication study. Cells 11: 3242.

  51. Seo JH, Kang SW, Kim K, Wi S, Lee JW, Cho SR (2020) Environmental enrichment attenuates oxidative stress and alters detoxifying enzymes in an A53T α-synuclein transgenic mouse model of Parkinson’s disease. Antioxidants (Basel) 9: 928. https://doi.org/10.3390/antiox9100928

  52. Tikhonova MA, Tikhonova NG, Tenditnik MV, Ovsyukova MV, Akopyan AA, Dubrovina NI, Amstislavskaya TG, Khlestkina EK (2020) Effects of grape polyphenols on the life span and neuroinflammatory alterations related to neurodegenerative Parkinson disease-like disturbances in mice. Molecules 25: 5339. https://doi.org/10.3390/molecules25225339

  53. Tikhonova MA, Shoeva OY, Tenditnik MV, Ovsyukova MV, Akopyan AA, Dubrovina NI, Amstislavskaya TG, Khlestkina EK (2020) Evaluating the effects of grain of isogenic wheat lines differing in the content of anthocyanins in mouse models of neurodegenerative disorders. Nutrients 12: 3877. https://doi.org/10.3390/nu12123877

  54. Kulikov VA, Khotskin NV, Nikitin SV, Lankin VS, Kulikov AV, Trapezov OV (2014) Application of 3-D imaging sensor for tracking minipigs in the open field test. J Neurosci Methods 235: 219–225. https://doi.org/10.1016/j.jneumeth.2014.07.012

  55. Khotskin NV, Plyusnina AV, Kulikova EA, Bazhenova EY, Fursenko DV, Sorokin IE, Kolotygin I, Mormede P, Terenina EE, Shevelev OB, Kulikov AV (2019) On association of the lethal yellow (AY) mutation in the agouti gene with the alterations in mouse brain and behavior. Behav Brain Res 359: 446–456. https://doi.org/10.1016/j.bbr.2018.11.013

  56. Ragaeva DS, Tikhonova MA, Petrova OM, Igonina TN, Rozkova IN, Brusentsev EY, Amstislavskaya TG, Amstislavsky SY (2017) Neonatal reflexes and behavior in hypertensive rats of ISIAH strain. Physiol Behav 175: 22–30. https://doi.org/10.1016/j.physbeh.2017.03.026

  57. Рожкова ИН, Окотруб СВ, Брусенцев ЕЮ, Ульданова ЕЕ, Чуйко ЭА, Напримеров ВА, Липина ТВ, Амстиславская ТГ, Амстиславский СЯ (2023) Изменения в социальном предпочтении места и плотность дофаминергических нейронов в вентральном тегментуме у Clsnt2-KO мышей. Вавиловск журн генетики и селекции 27: 177–184. [Rozhkova IN, Okotrub SV, Brusentsev EYu, Uldanova KE, Chuyko EА, Naprimerov VA, Lipina TV, Amstislavskaya TG, Amstislavsky SYa (2023) Alterations in the social-conditioned place preference and density of dopaminergic neurons in the ventral tegmental area in Clsnt2-KO mice. Vavilov J Genet Breed 27: 177–184. (In Russ)]. https://doi.org/10.18699/VJGB-23-14

  58. Paxinos G, Franklin K (2012) Mouse brain in stereotaxic coordinates. 4th ed., Acad Press.

  59. Rothman SM, Griffioen KJ, Vranis N, Ladenheim B, Cong WN, Cadet JL, Haran J, Martin B, Mattson MP (2013) Neuronal expression of familial Parkinson’s disease A53T α-synuclein causes early motor impairment, reduced anxiety and potential sleep disturbances in mice. J Parkinsons Dis 3: 215–229. https://doi.org/10.3233/JPD-120130

  60. Shiba M, Bower JH, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE, Schaid DJ, Rocca WA (2000) Anxiety disorders and depressive disorders preceding Parkinson’s disease: a case-control study. Mov Disord 15: 669–677. https://doi.org/10.1002/1531-8257(200007)15:4<669::aid-mds1011>3.0.co;2-5

  61. Pogorelov VM, Rodriguiz RM, Insco ML, Caron MG, Wetsel WC (2005) Novelty seeking and stereotypic activation of behavior in mice with disruption of the Dat1 gene. Neuropsychopharmacology 30: 1818–1831. https://doi.org/10.1038/sj.npp.1300724

  62. Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A (2000) Mice lackingalpha-synuclein display functional deficits in the nigrostriatal dopaminesystem. Neuron 25: 239–252. https://doi.org/10.1016/s0896-6273(00)80886-7

  63. Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA (2001) Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 21: 9549–9560. https://doi.org/10.1523/JNEUROSCI.21-24-09549.2001

  64. Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ (2002) A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci 22: 3090–3099. https://doi.org/10.1523/JNEUROSCI.22-08-03090.2002

  65. Lee FJ, Liu F, Pristupa ZB, Niznik HB (2001) Direct binding andfunctional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 15: 916–926. https://doi.org/10.1096/fj.00-0334com

  66. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379: 606–612. https://doi.org/10.1038/379606a0

  67. Uhl GR, Vandenbergh DJ, Miner LL (1996) Knockout mice and dirty drugs. Drug addiction. CurrBiol 6: 935–936. https://doi.org/10.1016/s0960-9822(02)00630-9

  68. Lothmann K, Deitersen J, Zilles K, Amunts K, Herold C (2021) New boundaries and dissociation of the mouse hippocampus along the dorsal-ventral axis based on glutamatergic, GABAergic and catecholaminergic receptor densities. Hippocampus 31: 56–78. https://doi.org/10.1002/hipo.23262

  69. Lisman JE, Talamini LM, Raffone A (2005) Recall of memory sequences by interaction of the dentate and CA3: a revised model of the phase precession. Neural Networks 18: 1191–1201. https://doi.org/10.1016/j.neunet.2005.08.008

  70. Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163: 3–22. https://doi.org/10.1016/S0079-6123(07)63001-5

  71. Braak H, Bohl JR, Muller CM, Rub U, de Vos RA, Del Tredici K (2006) Stanley Fahn Lecture 2005: The staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov Disord 21: 2042–2051. PMID: https://doi.org/10.1002/mds.2106517078043

  72. Goedert M, Spillantini MG, Del Tredici K, Braak H (2013) 100 years of Lewy pathology. Nat Rev Neurol 9: 13–24. https://doi.org/10.1038/nrneurol.2012.242

Дополнительные материалы отсутствуют.