Сенсорные системы, 2020, T. 34, № 4, стр. 283-298

Психофизические и нейрофизиологические характеристики оценки наклонных ориентаций у мужчин и женщин

Е. С. Михайлова 1*, Н. Ю. Герасименко 1, А. Б. Кушнир 1

1 ФГБУН Институт высшей нервной деятельности и нейрофизиологии РАН
117485 Москва, ул. Бутлерова, 5А, Россия

* E-mail: esmikhailova@mail.ru

Поступила в редакцию 11.05.2020
После доработки 28.05.2020
Принята к публикации 16.07.2020

Аннотация

В работе исследовали половые различия дискриминации наклонных ориентаций. Задачу определения близости наклонных ориентаций к горизонтальному, вертикальному и наклонному (45°) референтам выполняли 34 испытуемых (16 мужчин и 18 женщин) с нормальным зрением. Регистрировали точность, время реакции и вызванные потенциалы каудальных областей коры. Показано, что женщины совершают больше ошибок по сравнению с мужчинами, но не обнаруживают различий во времени реакции. Выявлены половые различия раннего анализа наклонных ориентаций. Только в группе мужчин амплитуда ранней негативности N1 ВП затылочной коры зависела от наклона линий: минимальные значения амплитуды характерны для ответа на наклонные линии, близкие к кардинальным осям, максимальные – на линии, близкие к 45°. Предполагается, что в основе половых различий ранней чувствительности затылочной коры к наклонным ориентациям лежат особенности переработки информации в дорзальном и вентральном зрительных путях, определяемые пре- и постнатальным влиянием стероидных гормонов (Handa, McGivern, 2014).

Ключевые слова: зрение, зрительная кора, зрительное восприятие, ориентация, наклонная ориентация, вызванный потенциал

DOI: 10.31857/S0235009220040046

Список литературы

  1. Михайлова Е.С., Герасименко Н.Ю., Крылова М.А., Изъюров И.В., Славуцкая А.В. Механизмы ориентационной чувствительности зрительной системы человека. Сообщение II. Корковые механизмы ранних этапов переработки информации об ориентации линий. Физиология человека. 2015. Т. 41 (3). С. 5–18. https://doi.org/10.7868/S013116461503011X

  2. Славуцкая А.В., Герасименко Н.Ю., Михайлова Е.С. Механизмы ориентационной чувствительности зрительной системы человека. Сообщение I. Поведенческие характеристики ориентационной чувствительности. Влияние характера задачи, экспериментальных условий и пола. Физиология человека. 2014. Т. 40 (6). С. 88–97. https://doi.org/10.7868/S0131164614050154

  3. Сущин М.А. Байесовский разум: Новая перспектива в когнитивной науке. Вопросы философии. 2017. Т. 3. С. 74–87.

  4. Alberts B.B.G.T., de Brouwer A.J., Selen L.P.J., Medendorp W.P. A Bayesian account of visual-vestibular interactions in the rod-and-frame task. 2016. Eneuro. V. 3 (5). P. 1–14. https://doi.org/10.1523/ENEURO.0093-16.2016

  5. Appelle S. Perception and discrimination as a function of stimulus orientation: The “oblique effect” in man and animals. Psychological Bulletin. 1972. V. 78 (4). P. 266–278. https://doi.org/10.1037/h0033117

  6. Barnett-Cowan M., Dyde R.T., Thompson C., Harris L.R. Multisensory determinants of orientation perception: task-specific sex differences. Europ. J. Neurosci. 2010. V. 31 (10). P. 1899–1907. https://doi.org/10.1111/j.1460-9568.2010.07199.x

  7. Bloem I.M., Ling S. Attentional modulation interacts with orientation anisotropies in contrast perception. J. Vision. 2017. V. 17 (11). P. 1–14. https://doi.org/10.1167/17.11.6

  8. Bocchi A., Palermo L., Boccia M., Palmiero M., D’Amico S., Piccardi L. Object recognition and location: Which component of object location memory for landmarks is affected by gender? Evidence from four to ten year-old children. Applied Neuropsychology: Child. 2018. P. 1–10. https://doi.org/10.1080/21622965.2018.1504218

  9. Boone A.P., Maghen B., Hegarty M. Instructions matter: Individual differences in navigation strategy and ability. Memory and Cognition. 2019. V. 47 (7). P. 1401–1414. https://doi.org/10.3758/s13421-019-00941-5

  10. Brun C.C., Leporé N., Luders E., Chou Y.Y., Madsen S.K., Toga A.W., Thompson P.M. Sex differences in brain structure in auditory and cingulate regions. NeuroReport. 2009. V. 20 (10). P. 930–935. https://doi.org/10.1097/WNR.0b013e32832c5e65

  11. Butler T., Imperato-McGinley J., Pan H., Voyer D., Cordero J., Zhu Y.S., Stern E., Silbersweig D. Sex differences in mental rotation: Top-down versus bottom-up processing. NeuroImage. 2006. V. 32 (1). P. 445–456. https://doi.org/10.1016/j.neuroimage.2006.03.030

  12. Campbell F.W., Kulikowski J.J. Orientational selectivity of the human visual system. J. Physiol. 1966. V. 187 (2). P. 437–445. https://doi.org/10.1113/jphysiol.1966.sp008101

  13. Caparelli-Dáquer E.M., Oliveira-Souza R., Moreira Filho P.F. Judgment of line orientation depends on gender, education, and type of error. Brain and Cognition. 2009. V. 69 (1). P. 116–120. https://doi.org/10.1016/j.bandc.2008.06.001

  14. Clemens B., Junger J., Pauly K., Neulen J., Neuschaefer-Rube C., Frölich D., Mingoia G., Derntl B., Habel U. Male-to-female gender dysphoria: Gender-specific differences in resting-state networks. Brain and Behavior. 2017. V. 7 (5). e00691–e00691. https://doi.org/10.1002/brb3.691

  15. Collaer M.L., Nelson J.D. Large visuospatial sex difference in line judgment: Possible role of attentional factors. Brain and Cognition. 2002. V. 49 (1). P. 1–12. https://doi.org/10.1006/brcg.2001.1321

  16. Cuturi L.F., Gori M. Biases in the visual and haptic subjective vertical reveal the role of proprioceptive/vestibular priors in child development. Frontiers in Neurology. 2019. V. 10. P. 1–10. https://doi.org/10.3389/fneur.2018.01151

  17. Dakin C.J., Rosenberg A. Gravity estimation and verticality perception. Handbook of Clinical Neurology. 2019. V. 159. P. 43–59. https://doi.org/10.1016/B978-0-444-63916-5.00003-3

  18. Dickinson A., Jones M., Milne E. Oblique orientation discrimination thresholds are superior in those with a high level of autistic traits. J. Autism and Developmental Disorders. 2014. V. 44. P. 2844–2850. https://doi.org/10.1007/s10803-014-2147-1

  19. Dragoi V., Turcu C.M., Sur M. Stability of cortical responses and the statistics of natural scenes. Neuron. 2001. V. 32 (6). P. 1181–1192. https://doi.org/10.1016/S0896-6273

  20. Edden R.A., Muthukumaraswamy S.D., Freeman T.C., Singh K.D. Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J. Neurosci. 2009. V. 29 (50). P. 15721–15726. https://doi.org/10.1523/jneurosci.4426-09.2009

  21. Friedman-Hill S., Maldonado P.E., Gray C.M. Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus-dependence of gamma-band neuronal oscillations. Cerebral Cortex. 2000. V. 10 (11). P. 1105–1116. https://doi.org/10.1093/cercor/10.11.1105

  22. Furmanski C., Engel S. An oblique effect in human primary visual cortex. Nature Neuroscience. 2000. V. 3. P. 535–536. https://doi.org/10.1038/75702

  23. Gagnon K.T., Thomas B.J., Munion A., Creem-Regehr S.H., Cashdan E.A., Stefanucci J.K. Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory. Cognition. 2018.V. 180. P. 108–117. https://doi.org/10.1016/j.cognition.2018.06.020

  24. Handa R.J., McGivern R.F. Steroid hormones, receptors, and perceptual and cognitive sex differences in the visual system. Current Eye Research. 2014. V. 40 (2). P. 110–127. https://doi.org/10.3109/02713683.2014.952826

  25. Hansen B.C., Essock E.A. A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes. J. Vision. 2004. V. 4 (12). P. 1044–1060. https://doi.org/10.1167/4.12.5

  26. Harris T.A., Scheuringer A., Pletzer B. Perspective and strategy interactively modulate sex differences in a 3D navigation task. Biol. Sex Differences. 2019. V. 10 (1). P. 1–12. https://doi.org/10.1186/s13293-019-0232-z

  27. Hines M., Fane B.A., Pasterski V.L., Mathews G.A., Conway G.S., Brook C. Spatial abilities following prenatal androgen abnormality: Targeting and mental rotations performance in individuals with congenital adrenal hyperplasia. Psychoneuroendocrinology. 2003. V. 28 (8). P. 1010–1026. https://doi.org/10.1016/S0306-4530(02)00121-X

  28. Herlitz A., Airaksinen E., Nordström E. Sex differences in episodic memory: The impact of verbal and visuospatial ability. Neuropsychology. 1999. V. 13 (4). P. 590–597. https://doi.org/10.1037/0894-4105.13.4.590

  29. Huang L., Shou T., Yu H., Sun C., Liang Z. Slab-like functional architecture of higher order cortical area 21a showing oblique effect of orientation preference in the cat. NeuroImage. 2006. V. 32. P. 1365–1374. https://doi.org/10.1016/j.neuroimage.2006.05.007

  30. Hubel D.H., Wiesel T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiology. 1962. V. 160 (1). P. 106–154. https://doi.org/10.1113/jphysiol.1962.sp006837

  31. Iachini T., Sergi I., Ruggiero G., Gnisci A. Gender differences in object location memory in a real three-dimensional environment. Brain and Cognition. 2005. V. 59 (1). P. 52–59. https://doi.org/10.1016/j.bandc.2005.04.004

  32. Kimura D. Sex and cognition. Cambridge, MA: MIT Press, 1999. 230 p. ISBN: 9780262112369

  33. Koelewijn L., Dumont J.R., Muthukumaraswamy S.D., Rich A.N., Singh K.D. Induced and evoked neural correlates of orientation selectivity in human visual cortex. NeuroImage. 2011. V. 54 (4). P. 2983–2993. https://doi.org/10.1016/j.neuroimage.2010.11.045

  34. Kramer J.H., Kaplan E., Delis D.C., O’Donnell L., Prifitera A. Developmental sex differences in verbal learning. Neuropsychology. 1997. V. 11 (4). P. 577–584. https://doi.org/10.1037/0894-4105.11.4.577

  35. Krolick K.N., Zhu Q., Shi H. Effects of estrogens on central nervous system neurotransmission: Implications for sex differences in mental disorders. Prog. Molecular Biol. Translational Sci. 2018. V. 160. P. 105–171. https://doi.org/10.1016/bs.pmbts.2018.07.008

  36. Lee J., Lee C. Changes in orientation discrimination at the time of saccadic eye movements. Vision Research. 2008. V. 48 (21). P. 2213–2223. https://doi.org/10.1016/j.visres.2008.06.014

  37. Li B., Peterson, M.R., Freeman R.D. Oblique effect: A neural basis in the visual cortex. J. Neurophysiol. 2003. V. 90 (1). P. 204–217. https://doi.org/10.1152/jn.00954.2002

  38. Luyat M., Mobarek S., Leconte C., Gentaz E. The plasticity of gravitational reference frame and the subjective vertical: Peripheral visual information affects the oblique effect. Neuroscience Letters. 2005. V. 385 (3). P. 215–219. https://doi.org/10.1016/j.neulet.2005.05.044

  39. Luyat M., Noël M., Thery V., Gentaz E. Gender and line size factors modulate the deviations of the subjective visual vertical induced by head tilt. BMC Neuroscience. 2012. V. 13 (1). P. 1–8. https://doi.org/10.1186/1471-2202-13-28

  40. McGivern R.F., Huston J.P., Byrd D., King T., Siegle G.J., Reilly J. Sex differences in visual recognition memory: Support for a sex-related difference in attention in adults and children. Brain and Cognition. 1997. V. 34 (3). P. 323–336. https://doi.org/10.1006/brcg.1997.0872

  41. Mikhailova E.S., Gerasimenko N.Y., Slavutskaya A.V. Effects of line orientation in visual evoked potentials. Spatial dynamics. and gender differences of neural oblique effect. BioRxiv. 2018. 323782. https://doi.org/10.1101/323782

  42. Mikhailova E.S., Slavutskaya A.V., Gerasimenko N.Yu. Gender differences in the recognition of spatially transformed figures: Behavioral data and event-related potentials (ERPs). Neuroscience Letters. 2012. V. 524 (2). P. 74–78.

  43. Muthukumaraswamy S.D., Edden R.A.E., Jones D.K., Swettenham J.B., Singh K.D. Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc. National Acad. Sci. 2009. V. 106 (20). P. 8356–8361. https://doi.org/10.1073/pnas.0900728106

  44. Nasr S., Tootell R.B. Role of fusiform and anterior temporal cortical areas in facial recognition. Neuroimage. 2012. V. 63 (3). P. 1743–1753. https://doi.org/10.1016/j.neuroimage.2012.08.031

  45. Nazareth A., Huang X., Voyer D., Newcombe N. A meta-analysis of sex differences in human navigation skills. Psychonomic Bull. Rev. 2019. V. 26 (5). P. 1503–1528. https://doi.org/10.3758/s13423-019-01633-6

  46. Nuñez J.L., Jurgens H.A., Juraska J.M. Androgens reduce cell death in the developing rat visual cortex. Developmental Brain Research. 2000. V. 125 (1–2). P. 83–88. https://doi.org/10.1016/S0165-3806

  47. Nuñez J.L., Lauschke D.M., Juraska J.M. Cell death in the development of the posterior cortex in male and female rats. J. Comparative Neurol. 2001. V. 436 (1). P. 32–41. https://doi.org/10.1002/cne.1051

  48. Ocklenburg S., Hirnstein M., Ohmann H.A., Hausmann M. Mental rotation does not account for sex differences in left-right confusion. Brain and Cognition. 2011. V. 76 (1). P. 166–171. https://doi.org/10.1016/j.bandc.2011.01.010

  49. Patten M.L., Mannion D.J., Clifford C.W.G. Correlates of perceptual orientation biases in human primary visual cortex. J. Neurosci. 2017. V. 37 (18). P. 4744–4750. https://doi.org/10.1523/JNEUROSCI.3511-16.2017

  50. Proverbio A.M., Esposito P., Zani A. Early involvement of the temporal area in attentional selection of grating orientation: an ERP study. Cognitive Brain Research. 2002. V. 13 (1). P. 139–151. https://doi.org/10.1016/s0926-6410(01)00103-3

  51. Samonds J., Bonds A.B. Gamma Oscillation maintains stimulus structure-dependent synchronization in cat visual cortex. J. Neurophysiol. 2005. V. 93. P. 223-36. https://doi.org/10.1152/jn.00548.2004

  52. Saucier D.M., Green S.M., Leason J., MacFadden A., Bell S., Elias L.J. Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use the strategies? Behavioral Neuroscience. 2002. V. 116 (3). P. 403–410. https://doi.org/10.1037/0735-7044.116.3.403

  53. Seymoure P., Juraska J.M. Vernier and grating acuity in adult hooded rats: The influence of sex. Behavioral Neuroscience. 1997. V. 111 (4). P. 792–800. https://doi.org/10.1037/0735-7044.111.4.792

  54. Shaqiri A., Roinishvili M., Grzeczkowski L., Chkonia E., Pilz K., Mohr C., Brand A., Kunchulia M., Herzog M.H. Sex-related differences in vision are heterogeneous. Scientific reports. 2018. V. 8 (1). P. 7521. https://doi.org/10.1038/s41598-018-25298-8

  55. Sillito A.M. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. The J. Physiol. 1975. V. 250 (2). P. 305–329. https://doi.org/10.1113/jphysiol.1975.sp011056

  56. Song Y., Sun L., Wang Y., Zhang X., Kang J., Ma X., Yang B., Guan Y., Ding Y. The effect of short-term training on cardinal and oblique orientation discrimination: An ERP study. Intern. J. Psychophysiol. 2010. V. 75 (3). P. 241–248. https://doi.org/10.1016/j.ijpsycho.2009.11.007

  57. Takács E., Sulykos I. Czigler I., Barkaszi. I., Balázs L. Oblique effect in visual mismatch negativity. Frontiers in Human Neuroscience. 2013. V. 7. P. 591. https://doi.org/10.3389/fnhum.2013.00591

  58. Yagi S., Galea L.A.M. Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology. 2018. V. 44 (1). P. 200–213. https://doi.org/10.1038/s41386-018-0208-4

  59. Yang B., Ma X., Schweinhart A.M., Wang F., Sun M., Song Y. Comparison of event-related potentials elicited by cardinal and oblique orientations with broad-band noise stimuli. Vision Research. 2012. V. 60. P. 95–100. https://doi.org/10.1016/j.visres.2012.03.011

  60. Yashar A., Denison R.N. Feature reliability determines specificity and transfer of perceptual learning in orientation search. PLOS Computational Biology. 2017. V. 13 (12). e1005882. https://doi.org/10.1371/journal.pcbi.1005882

Дополнительные материалы отсутствуют.