Теоретические основы химической технологии, 2023, T. 57, № 5, стр. 532-544
Аддитивные технологии для медицины, фармацевтики и химической промышленности: применение и перспективы
А. А. Абрамов a, *, Н. В. Меньшутина a
a Российский химико-технологический университет имени Д.И. Менделеева
Москва, Россия
* E-mail: chemcom@muctr.ru
Поступила в редакцию 27.06.2023
После доработки 11.07.2023
Принята к публикации 23.07.2023
- EDN: MBMSQU
- DOI: 10.31857/S0040357123050019
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Аннотация
В статье рассмотрены основные методы и технологии трехмерной печати. Представлены основные принципы технологий, которые реализуются в порошковых, полимеризационных и экструзионных методах аддитивного производства. Рассмотрены основные применения аддитивных технологий в области медицины, фармацевтики и химической технологии. На основании проведенного обзора сделаны выводы о существующих проблемах и ограничениях, которые не позволяют интегрировать аддитивные процессы в промышленность. Кроме того, рассмотрены перспективы развития аддитивных технологий в данных областях применения.
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Список литературы
Valverde I., Gomez-Ciriza G., Hussain T., Suarez-Mejias C., Velasco-Forte M.N., Byrne N., Ordoñez A., Gonzalez-Calle A., Anderson D., Hazekamp M.G., Roest A.A.W., Rivas-Gonzalez J., Uribe S., El-Rassi I., Simpson J., Miller O., Ruiz E., Zabala I., Mendez A. et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study // European J. Cardio-Thoracic Surgery. 2017. V. 52. № 6. P. 1139–1148.
Ganguli A., Pagan-Diaz G.J., Grant L., Cvetkovic C., Bramlet M., Vozenilek J., Kesavadas T., Bashir R. 3D printing for preoperative planning and surgical training: a review // Biomedical Microdevices. 2018. V. 20. № 3. P. 1–24.
Chen G., Xu Y., Kwok P.C.L., Kang L. Pharmaceutical Applications of 3D Printing // Additive Manufacturing. 2020. V. 34. P. 101209.
Gao G., Ahn M., Cho W.W., Kim B.S., Cho D.W. 3D Printing of Pharmaceutical Application: Drug Screening and Drug Delivery // Pharmaceutics 2021. V. 13. P. 1373. 2021. V. 13. № 9. P. 1373.
Dhavalikar P., Lan Z., Kar R., Salhadar K., Gaharwar A.K., Cosgriff-Hernandez E. Biomedical Applications of Additive Manufacturing // Biomaterials Science: An Introduction to Materials in Medicine. 2020. P. 623–639.
Singh S., Ramakrishna S. Biomedical applications of additive manufacturing: Present and future // Current Opinion in Biomedical Engineering. 2017. V. 2. P. 105–115.
Zhang J., Vo A.Q., Feng X., Bandari S., Repka M.A. Pharmaceutical Additive Manufacturing: a Novel Tool for Complex and Personalized Drug Delivery Systems // AAPS PharmSciTech. 2018. V. 19. № 8. P. 3388–3402.
Borandeh S., van Bochove B., Teotia A., Seppälä J. Polymeric drug delivery systems by additive manufacturing // Advanced Drug Delivery Reviews. 2021. V. 173. P. 349–373.
Hock S., Rein C., Rose M. 3D-Printed Acidic Monolithic Catalysts for Liquid-Phase Catalysis with Enhanced Mass Transfer Properties // ChemCatChem. 2022. V. 14. № 8. P. e202101947.
Aghaei A., Firouzjaei M.D., Karami P., Aktij S.A., Elliott M., Mansourpanah Y., Rahimpour A., B. P. Soares J., Sadrzadeh M. The implications of 3D-printed membranes for water and wastewater treatment and resource recovery // The Canadian J. Chemical Engineering. 2022. V. 100. № 9. P. 2309–2321.
Balogun H.A., Sulaiman R., Marzouk S.S., Giwa A., Hasan S.W. 3D printing and surface imprinting technologies for water treatment: A review // J. Water Process Engineering. 2019. V. 31. P. 100786.
Lee W., Kwon D., Choi W., Jung G.Y., Au A.K., Folch A., Jeon S. 3D-Printed Microfluidic Device for the Detection of Pathogenic Bacteria Using Size-based Separation in Helical Channel with Trapezoid Cross-Section // Scientific Reports 2015 5:1. 2015. V. 5. № 1. P. 1–7.
W.H.C. Apparatus for Production of Three-Dimensional Objects by Stereolithography // United States Patent, Appl., No. 638905, Filed. 1984.
ГОСТ Р 57558-2017/ISO/ASTM 52900:2015 Аддитивные технологические процессы. Базовые принципы. Часть 1. Термины и определения (Переиздание) – docs.cntd.ru [Electronic resource]. URL: https://docs.cntd.ru/document/1200146332 (accessed: 22.03.2023).
Olakanmi E.O., Cochrane R.F., Dalgarno K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties // Progress in Materials Science. 2015. V. 74. P. 401–477.
Kruth J.P., Mercelis P., Van Vaerenbergh J., Froyen L., Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting // Rapid Prototyping J. 2005. V. 11. № 1. P. 26–36.
Nouri A., Rohani Shirvan A., Li Y., Wen C. Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: A review // J. Materials Science & Technology. 2021. V. 94. P. 196–215.
Wei C., Li L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. 2021. V. 16. № 3. P. 347–371.https://doi.org/10.1080/17452759.2021.1928520
Charoo N.A., Barakh Ali S.F., Mohamed E.M., Kuttolamadom M.A., Ozkan T., Khan M.A., Rahman Z. Selective laser sintering 3D printing – an overview of the technology and pharmaceutical applications. 2020. V. 46. № 6. p. 869–877.https://doi.org/10.1080/03639045.2020.1764027
Tikhomirov E., Åhlén M., Di Gallo N., Strømme M., Kipping T., Quodbach J., Lindh J. Selective laser sintering additive manufacturing of dosage forms: Effect of powder formulation and process parameters on the physical properties of printed tablets // International J. Pharmaceutics. 2023. V. 635. P. 122780.
Jia H., Sun H., Wang H., Wu Y., Wang H. Scanning strategy in selective laser melting (SLM): a review // The International J. Advanced Manufacturing Technology 2021 113:9. 2021. V. 113. № 9. P. 2413–2435.
Nandhakumar R., Venkatesan K. A process parameters review on selective laser melting-based additive manufacturing of single and multi-material: Microstructure, physical properties, tribological, and surface roughness // Materials Today Communications. 2023. V. 35. P. 105538.
Xie F., He X., Cao S., Qu X. Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering // J. Materials Processing Technology. 2013. v. 213. № 6. P. 838–843.
Xie F., He X., Lv Y., Wu M., He X., Qu X. Selective laser sintered porous Ti–(4–10)Mo alloys for biomedical applications: Structural characteristics, mechanical properties and corrosion behaviour // Corrosion Science. 2015. V. 95. P. 117–124.
Stoia D.I., Linul E., Marsavina L. Influence of Manufacturing Parameters on Mechanical Properties of Porous Materials by Selective Laser Sintering // Materials 2019. V. 12. P. 871. 2019. V. 12. № 6. P. 871.
Senthilkumaran K., Pandey P.M., Rao P.V.M. Influence of building strategies on the accuracy of parts in selective laser sintering // Materials & Design. 2009. V. 30. № 8. P. 2946–2954.
AlMangour B., Yang J.M. Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing // Materials & Design. 2016. V. 110. P. 914–924.
Schmidt M., Merklein M., Bourell D., Dimitrov D., Hausotte T., Wegener K., Overmeyer L., Vollertsen F., Levy G.N. Laser based additive manufacturing in industry and academia // CIRP Annals. 2017. V. 66. № 2. P. 561–583.
Van Bael S., Chai Y.C., Truscello S., Moesen M., Kerckhofs G., Van Oosterwyck H., Kruth J.P., Schrooten J. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds // Acta Biomaterialia. 2012. V. 8. № 7. P. 2824–2834.
Fukuda A., Takemoto M., Saito T., Fujibayashi S., Neo M., Pattanayak D.K., Matsushita T., Sasaki K., Nishida N., Kokubo T., Nakamura T. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting // Acta Biomaterialia. 2011. V. 7. № 5. P. 2327–2336.
Method of and apparatus for production of three dimensional objects by stereolithography. 1992.
Tetsuka H., Shin S.R. Materials and technical innovations in 3D printing in biomedical applications // J. Materials Chemistry B. 2020. V. 8. № 15. P. 2930–2950.
Stereolithography / Ed. Bártolo P.J. 2011.
Kuang X., Wu J., Chen K., Zhao Z., Ding Z., Hu F., Fang D., Qi H.J. Grayscale digital light processing 3D printing for highly functionally graded materials // Science Advances. 2019. V. 5. № 5.
Katseli V., Economou A., Kokkinos C. Smartphone-Addressable 3D-Printed Electrochemical Ring for Nonenzymatic Self-Monitoring of Glucose in Human Sweat // Analytical Chemistry. 2021. V. 93. № 7. P. 3331–3336.
Zuo Y., Su X., Li X., Yao Z., Yu T., Zhou J., Li J., Lu J., Ding J. Multimaterial 3D-printing of graphene/ Li0.35Zn0.3Fe2.35O4 and graphene/carbonyl iron composites with superior microwave absorption properties and adjustable bandwidth // Carbon. 2020. V. 167. P. 62–74.
Quan H., Zhang T., Xu H., Luo S., Nie J., Zhu X. Photo-curing 3D printing technique and its challenges // Bioactive Materials. 2020. V. 5. № 1. P. 110–115.
Douglass M., Douglass M.R. DMD reliability: a MEMS success story. 2003. V. 4980. № 16. P. 1–11.https://doi.org/10.1117/12.478212
Wang X., Jiang M., Zhou Z., Gou J., Hui D. 3D printing of polymer matrix composites: A review and prospective // Composites Part B: Engineering. 2017. V. 110. P. 442–458.
Chen X., Chen G., Wang G., Zhu P., Gao C. Recent Progress on 3D-Printed Polylactic Acid and Its Applications in Bone Repair // Advanced Engineering Materials. 2020. V. 22. № 4. P. 1901065.
Ghosh K., Pumera M. Free-standing electrochemically coated MoSx based 3D-printed nanocarbon electrode for solid-state supercapacitor application // Nanoscale. 2021. V. 13. № 11. P. 5744–5756.
Baich L., Manogharan G., Marie H. Study of infill print design on production cost-time of 3D printed ABS parts // International J. Rapid Manufacturing. 2015. V. 5. № 3/4. P. 308.
Mohamed O.A., Masood S.H., Bhowmik J.L. Optimization of fused deposition modeling process parameters: a review of current research and future prospects // Advances in Manufacturing. 2015. V. 3. № 1. P. 42–53.
Zhang Y.S., Haghiashtiani G., Hübscher T., Kelly D.J., Lee J.M., Lutolf M., McAlpine M.C., Yeong W.Y., Zenobi-Wong M., Malda J. 3D extrusion bioprinting // Nature Reviews Methods Primers 2021 1:1. 2021. V. 1. № 1. P. 1–20.
Zhang Z., Jin Y., Yin J., Xu C., Xiong R., Christensen K., Ringeisen B.R., Chrisey D.B., Huang Y. Evaluation of bioink printability for bioprinting applications // Applied Physics Reviews. 2018. V. 5. № 4. P. 041304.
Hussain S., Malakar S., Arora V.K. Extrusion-Based 3D Food Printing: Technological Approaches, Material Characteristics, Printing Stability, and Post-processing // Food Engineering Reviews. 2022. V. 14. № 1. P. 100–119.
Sodian R., Weber S., Markert M., Rassoulian D., Kaczmarek I., Lueth T.C., Reichart B., Daebritz S. Stereolithographic Models for Surgical Planning in Congenital Heart Surgery // The Annals of Thoracic Surgery. 2007. V. 83. № 5. P. 1854–1857.
Dho Y.-S., Lee D., Ha T., Ji S.Y., Kim K.M., Kang H., Kim M.-S., Kim J.W., Cho W.-S., Kim Y.H., Kim Y.G., Park S.J., Park C.-K. Clinical application of patient-specific 3D printing brain tumor model production system for neurosurgery // Scientific Reports|. 123AD. V. 11. P. 7014.
Yang M., Li C., Li Y., Zhao Y., Wei X., Zhang G., Fan J., Ni H., Chen Z., Bai Y., Li M. Application of 3D Rapid Prototyping Technology in Posterior Corrective Surgery for Lenke 1 Adolescent Idiopathic Scoliosis Patients // Medicine. 2015. V. 94. № 8. P. e582.
Lim S.H., Park S., Lee C.C., Ho P.C.L., Kwok P.C.L., Kang L. A 3D printed human upper respiratory tract model for particulate deposition profiling // International J. Pharmaceutics. 2021. V. 597. P. 120307.
Tellisi N., Ashammakhi N.A., Billi F., Kaarela O. Three dimensional printed bone implants in the clinic // J. Craniofacial Surgery. 2018. V. 29. № 8. P. 2363–2367.
Götze C., Steens W., Vieth V., Poremba C., Claes L., Steinbeck J. Primary stability in cementless femoral stems: custom-made versus conventional femoral prosthesis // Clinical Biomechanics. 2002. V. 17. № 4. P. 267–273.
Mehboob H., Tarlochan F., Mehboob A., Chang S.H., Ramesh S., Harun W.S.W., Kadirgama K. A novel design, analysis and 3D printing of Ti–6Al–4V alloy bio-inspired porous femoral stem // J. Materials Science: Materials in Medicine. 2020. V. 31. № 9. P. 1–14.
Zhang G., Zhao P., Lin L., Qin L., Huan Z., Leeflang S., Zadpoor A.A., Zhou J., Wu L. Surface-treated 3D printed Ti–6Al–4V scaffolds with enhanced bone regeneration performance: an in vivo study // Annals of Translational Medicine. 2021. V. 9. № 1. P. 39–39.
Jetté B., Brailovski V., Simoneau C., Dumas M., Terriault P. Development and in vitro validation of a simplified numerical model for the design of a biomimetic femoral stem // J. Mechanical Behavior of Biomedical Materials. 2018. V. 77. P. 539–550.
Jia D., Li F., Zhang C., Liu K., Zhang Y. Design and simulation analysis of Lattice bone plate based on finite element method // https://doi.org/. 2019. V. 28. № 13. P. 1311–1321.https://doi.org/10.1080/15376494.2019.1665759
Du Y., Liu H., Yang Q., Wang S., Wang J., Ma J., Noh I., Mikos A.G., Zhang S. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits // Biomaterials. 2017. V. 137. P. 37–48.
Iglesias-Mejuto A., García-González C.A. 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering // Materials Science and Engineering: C. 2021. V. 131. P. 112525.
Yeong W.Y., Sudarmadji N., Yu H.Y., Chua C.K., Leong K.F., Venkatraman S.S., Boey Y.C.F., Tan L.P. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering // Acta Biomaterialia. 2010. V. 6. № 6. P. 2028–2034.
Demir A.G., Previtali B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting // Materials & Design. 2017. V. 119. P. 338–350.
Finazzi V., Demir A.G., Biffi C.A., Migliavacca F., Petrini L., Previtali B. Design and functional testing of a novel balloon-expandable cardiovascular stent in CoCr alloy produced by selective laser melting // J. Manufacturing Processes. 2020. V. 55. P. 161–173.
Flege C., Vogt F., Höges S., Jauer L., Borinski M., Schulte V.A., Hoffmann R., Poprawe R., Meiners W., Jobmann M., Wissenbach K., Blindt R. Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting // J. Materials Science: Materials in Medicine. 2013. V. 24. № 1. P. 241–255.
Gilon D., Cape E.G., Handschumacher M.D., Song J.K., Solheim J., VanAuker M., King M.E.E., Levine R.A. Effect of three-dimensional valve shape on the hemodynamics of aortic stenosis: Three-dimensional echocardiographic stereolithography and patient studies // J. American College of Cardiology. 2002. V. 40. № 8. P. 1479–1486.
Melhem M.R., Park J., Knapp L., Reinkensmeyer L., Cvetkovic C., Flewellyn J., Lee M.K., Jensen T.W., Bashir R., Kong H., Schook L.B. 3D Printed Stem-Cell-Laden, Microchanneled Hydrogel Patch for the Enhanced Release of Cell-Secreting Factors and Treatment of Myocardial Infarctions // ACS Biomaterials Science and Engineering. 2017. V. 3. № 9. P. 1980–1987.
Koh W.G., Revzin A., Pishko M.V. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells // Langmuir. 2002. V. 18. № 7. P. 2459–2462.
Wang Z., Abdulla R., Parker B., Samanipour R., Ghosh S., Kim K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks // Biofabrication. 2015. V. 7. № 4. P. 045009.
Markstedt K., Mantas A., Tournier I., Martínez Ávila H., Hägg D., Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications // Biomacromolecules. 2015. V. 16. № 5. P. 1489–1496.
Zhong C., Xie H.Y., Zhou L., Xu X., Zheng S. Sen. Human hepatocytes loaded in 3D bioprinting generate mini-liver // Hepatobiliary & Pancreatic Diseases International. 2016. v. 15. № 5. P. 512–518.
Wu Y., Lin Z.Y. (William), Wenger A.C., Tam K.C., Tang X. (Shirley). 3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink // Bioprinting. 2018. V. 9. P. 1–6.
Kang H.W., Lee S.J., Ko I.K., Kengla C., Yoo J.J., Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity // Nature Biotechnology 2016 34:3. 2016. V. 34. № 3. P. 312–319.
Lawlor K.T., Vanslambrouck J.M., Higgins J.W., Chambon A., Bishard K., Arndt D., Er P.X., Wilson S.B., Howden S.E., Tan K.S., Li F., Hale L.J., Shepherd B., Pentoney S., Presnell S.C., Chen A.E., Little M.H. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation // Nature Materials 2020 20:2. 2020. V. 20. № 2. P. 260–271.
Ramesh S., Harrysson O.L.A., Rao P.K., Tamayol A., Cormier D.R., Zhang Y., Rivero I.V. Extrusion bioprinting: Recent progress, challenges, and future opportunities // Bioprinting. 2021. V. 21. P. E00116.
Budtova T., Aguilera D.A., Beluns S., Berglund L., Chartier C., Espinosa E., Gaidukovs S., Klimek-kopyra A., Kmita A., Lachowicz D., Liebner F., Platnieks O., Rodríguez A., Navarro L.K.T., Zou F., Buwalda S.J. Biorefinery Approach for Aerogels // Polymers 2020. V. 12. P. 2779. 2020. V. 12. № 12. P. 2779.
Allahham N., Fina F., Marcuta C., Kraschew L., Mohr W., Gaisford S., Basit A.W., Goyanes A. Selective Laser Sintering 3D Printing of Orally Disintegrating Printlets Containing Ondansetron // Pharmaceutics 2020. V. 12. P. 110. 2020. V. 12. № 2. P. 110.
Sadia M., Arafat B., Ahmed W., Forbes R.T., Alhnan M.A. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets // J. Controlled Release. 2018. V. 269. P. 355–363.
Economidou S.N., Lamprou D.A., Douroumis D. 3D printing applications for transdermal drug delivery // International J. Pharmaceutics. 2018. V. 544. № 2. P. 415–424.
Uddin M.J., Scoutaris N., Economidou S.N., Giraud C., Chowdhry B.Z., Donnelly R.F., Douroumis D. 3D printed microneedles for anticancer therapy of skin tumours // Materials Science and Engineering: C. 2020. V. 107. P. 110248.
Lahtinen E., Kukkonen E., Kinnunen V., Lahtinen M., Kinnunen K., Suvanto S., Vaïsänen A., Haukka M. Gold Nanoparticles on 3D-Printed Filters: From Waste to Catalysts // ACS Omega. 2019. v. 4. № 16. P. 16891–16898.
Lahtinen E., Turunen L., Hänninen M.M., Kolari K., Tuononen H.M., Haukka M. Fabrication of Porous Hydrogenation Catalysts by a Selective Laser Sintering 3D Printing Technique // ACS Omega. 2019. V. 4. № 7. P. 12012–12017.
Ambrosi A., Pumera M. Self-Contained Polymer/Metal 3D Printed Electrochemical Platform for Tailored Water Splitting // Advanced Functional Materials. 2018. V. 28. № 27. P. 1700655.
Chang S., Huang X., Aaron Ong C.Y., Zhao L., Li L., Wang X., Ding J. High loading accessible active sites via designable 3D-printed metal architecture towards promoting electrocatalytic performance // J. Materials Chemistry A. 2019. V. 7. № 31. P. 18338–18347.
Zhou X., Liu C.-J., Zhou X.T., Liu C.-J. Three-dimensional Printing for Catalytic Applications: Current Status and Perspectives // Advanced Functional Materials. 2017. V. 27. № 30. P. 1701134.
Chen L., Zhou S., Li M., Mo F., Yu S., Wei J. Catalytic Materials by 3D Printing: A Mini Review // Catalysts 2022. V. 12. P. 1081. 2022. V. 12. № 10. P. 1081.
Zhu J., Wu P., Chao Y., Yu J., Zhu W., Liu Z., Xu C. Recent advances in 3D printing for catalytic applications // Chemical Engineering J. 2022. V. 433. P. 134341.
Lee J.H., Ko K.H., Park B.O. Electrical and optical properties of ZnO transparent conducting films by the sol–gel method // J. Crystal Growth. 2003. V. 247. № 1–2. P. 119–125.
Miyauchi M., Li Y., Shimizu H. Enhanced degradation in nanocomposites of TiO2 and biodegradable polymer // Environmental Science and Technology. 2008. V. 42. № 12. P. 4551–4554.
Vunain E., Mishra A.K., Krause R.W. Fabrication, Characterization and Application of Polymer Nanocomposites for Arsenic(III) Removal from Water // J. Inorganic and Organometallic Polymers and Materials. 2013. V. 23. № 2. P. 293–305.
Castles F., Isakov D., Lui A., Lei Q., Dancer C.E.J., Wang Y., Janurudin J.M., Speller S.C., Grovenor C.R.M., Grant P.S. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites // Scientific Reports 2016 6:1. 2016. V. 6. № 1. P. 1–8.
Parra-Cabrera C., Achille C., Kuhn S., Ameloot R. 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors // Chemical Society Reviews. 2018. V. 47. № 1. P. 209–230.
Rossi S., Porta R., Brenna D., Puglisi A., Benaglia M. Stereoselective Catalytic Synthesis of Active Pharmaceutical Ingredients in Homemade 3D-Printed Mesoreactors // Angewandte Chemie. 2017. V. 129. № 15. P. 4354–4358.
Vlachova J., Tmejova K., Kopel P., Korabik M., Zitka J., Hynek D., Kynicky J., Adam V., Kizek R. A 3D Microfluidic Chip for Electrochemical Detection of Hydrolysed Nucleic Bases by a Modified Glassy Carbon Electrode // Sensors 2015 V. 15. P. 2438–2452. 2015. V. 15. № 2. P. 2438–2452.
Chaloeipote G., Prathumwan R., Subannajui K., Wisitsoraat A., Wongchoosuk C. 3D printed CuO semiconducting gas sensor for ammonia detection at room temperature // Materials Science in Semiconductor Processing. 2021. V. 123. P. 105546.
Feng Y., Chang J., Chen X., Zhang Q., Wang Z., Sun J., Zhang Z. Application of TDM and FDM methods in TDLAS based multi-gas detection // Optical and Quantum Electronics. 2021. V. 53. № 4. P. 1–11.
Iglesias-Mejuto A., García-González C.A. 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering // Materials Science and Engineering: C. 2021. V. 131. P. 112525.
Nocera A.D., Comín R., Salvatierra N.A., Cid M.P. Development of 3D printed fibrillar collagen scaffold for tissue engineering // Biomedical Microdevices. 2018. V. 20. № 2. P. 1–13.
Дополнительные материалы отсутствуют.
Инструменты
Теоретические основы химической технологии