Водные ресурсы, 2023, T. 50, № 5, стр. 585-601

Применимость различных педострансферных функций к описанию гидрофизических характеристик почв (грунтов)

А. А. Рязанова ab*, В. Ю. Богомолов abcde, А. И. Медведев ef

a Институт мониторинга климатических и экологических систем СО РАН
634055 Томск, Россия

b Институт физики атмосферы им. А.М. Обухова РАН
119017 Москва, Россия

c Научно-исследовательский Томский государственный университет
634050 Томск, Россия

d Научно-исследовательский вычислительный центр, Московский государственный университет им. М.В. Ломоносова
119234 Москва, Россия

e Институт водных проблем РАН
119333 Москва, Россия

f Гидрометеорологический научно-исследовательский центр Российской Федерации
123376 Москва, Россия

* E-mail: r.ann.1194@gmail.com

Поступила в редакцию 01.02.2023
После доработки 05.04.2023
Принята к публикации 05.04.2023

Аннотация

Проведен сравнительный анализ гидрофизических характеристик, полученных с помощью педотрансферных функций, и гидрофизических характеристик из глобального почвенного набора.

Ключевые слова: моделирование, гидравлическая проводимость, потенциал влаги.

Список литературы

  1. Алексеев В.А., Володин Е.М., Галин В.Я., Дымников В.П., Лыкосов В.Н. Описание модели общей циркуляции атмосферы ИВМ РАН – версия 1997 года. М.: ИВМ РАН, 1997. 78 с.

  2. Володин Е.М., Дианский Н.А., Гусев А.В. Воспроизведение современного климата с помощью совместной модели общей циркуляции атмосферы и океана INMCM4.0 // Изв. РАН. Физика атмосферы и океана. 2010. Т. 46. С. 448–466.

  3. Лыкосов В.Н., Палагин Э.Г. Динамика взаимосвязанного переноса тепла и влаги в системе атмосфера–почва // Метеорология и гидрология. 1978. № 8. С. 48–56.

  4. Палагин Э.Г. Математическое моделирование агрометеорологических условий перезимовки озимых культур. Л.: Гидрометеоиздат, 1981. 191 с.

  5. Травова С.В., Степаненко В.М., Медведев А.И., Толстых М.А., Богомолов В.Ю. Качество воспроизведения состояния почвы моделью деятельного слоя суши ИВМ РАН−МГУ в составе модели прогноза погоды ПЛАВ // Метеорология и гидрология. 2022. № 3. С. 5–24. https://doi.org/10.52002/0130-2906-2022-3-5-24

  6. Шеин Е.В. Курс физики почв. М.: Изд-во МГУ, 2005. 432 с.

  7. Benham E., Ahrens R.J., Nettleton W.D. Clarification of Soil Texture Class Boundaries // National Soil Survey Center. L.: USDA-NRCS, 2009.

  8. Bouma J., van Lanen H.A.J. Transfer functions and threshold values: from soil characteristics to land qualities. Washington: Int. Workshop Quantified Land Evaluation Procedures, 1986. P. 106.

  9. Brakensiek D.L., Rawls W.J., Stephenson G.R. Modifying SCS hydrologic soil groups and curve numbers for rangeland soils // St. J. ASAE Paper. 1984. PNR-84-203.

  10. Campbell G.S. A simple method for determining unsaturated conductivity from moisture retention data // Soil Scinc. 1974. 117 (6). P. 311–314. https://doi.org/10.1097/00010694-197406000-00001

  11. Campbell G.S., Shiozawa S. Prediction of hydraulic properties of soils using particle-size distribution and bulk density data ed. M.Th. van Genuchten et al // Proc. Int. Workshop on Indirect methods for Estimating the Hydraulic Properties of Unsaturated Soils. Riverside: Univ. California, 1992. P. 317–328.

  12. Clapp R.B., Hornberger M.G. Empirical equations for some soil hydraulic properties // Water Resour. Res. 1978. V. 14. № 4. P. 601–604.

  13. Cosby B.J., Hornberger G.M., Clapp R.B., Ginn T.R. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of the soil // Water Resour. Res. 1984. V. 20. № 6. C. 682–690.

  14. Dai Y., Xin Q., Wei N., Zhang Y., Shangguan W., Yuan H. et al. A global high-resolution data set of soil hydraulic and thermal properties for land surface modeling // Advances Modeling Earth Systems. 2019. V. 11. № 9. P. 2996–3023. https://doi.org/10.1029/2019MS001784

  15. Drozdov E.D., Stepanenko V.M., Voropay N.N., Dyukarev E.A., Kokoreva A.A., Cherkashina A.A., Bogomolov V.Yu. Parametrization of soil thermal conductivity in the INM RAS-MSU land surface model // IOP Conf. Ser.: Earth Environ. Sci. 2020. V. 611. P. 1–5. https://doi.org/10.1088/1755-1315/611/1/012022

  16. Guber A.K., Pachepsky Ya.A. Multimodeling with Pedotransfer Functions. Documentation and User Manual for PTF Calculator (CalcPTF). Version 3.0. Environmental Microbial and Food Safety Laboratory Beltsville Agricultural Research Center. USDA-ARS. 2010.

  17. Jabro J.D. Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data // Trans ASAE. 1992. V. 35. P. 557–560.

  18. Mayr T., Jarvis N.J. Pedotransfer functions to estimate soil water retention parameters for a modified Brooks–Corey type model // Geoderma. 1999. V. 91. P. 1–9.

  19. Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media // Water Resour. Res. 1976. V. 12 (3). P. 513–522. https://doi.org/10.1029/WR012i003p00513

  20. Nemes A., Rawls W.J., Pachepsky Y.A. Influence of organic matter on the estimation of saturated hydraulic conductivity // Soil Sci. Soc. Am. J. 2005. V. 69. P. 1330–1337. https://doi.org/10.2136/sssaj2004.0055

  21. Osterveld M., Chang C. Empirical relations between laboratory determination of soil texture and moisture characteristic // Can. Agric. Eng. 1980. V. 22. P. 149–151.

  22. Ottoni M.V., Ottoni Filho T.B., Lopes-Assad M.L.R.C., Rotunno Filho O.C. Pedotransfer functions for saturated hydraulic conductivity using a database with temperate and tropical climate soils // J. Hydrol. 2019. V. 575. P. 1345–1358. https://doi.org/10.1016/j.jhydrol.2019.05.050

  23. Saxton K.E., Rawls W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions // Soil Sci. Soc. 2006. V. 70. № 5. P. 1569–1578. https://doi.org/10.2136/sssaj2005.0117

  24. Saxton K.E., Rawls W.J., Romberger J.S., Papendic R.I. Estimating generalized soil- water characteristics from texture // Soil Sci. Soc. 1986. V. 50. № 4.

  25. Shwetha P., Prasanna K. Pedotransfer functions for the estimation of saturated hydraulic conductivity for some Indian sandy soils // Eurasian Soil Sci. 2018. V. 51. P. 1042–1049. https://doi.org/10.1134/S1064229318090119

  26. Soil Science Division Staff. Soil survey sand / Eds C. Ditzler, K. Scheffe, H.C. Monger. Washington: Government Printing Office, 2017.

  27. Soil survey manual. Washington: United States Department of Agriculture, 2018. P. 63–65.

  28. Tomasella J., Hodnett M.G. Estimating unsaturated hydraulic conductivity of Brazilian soils using soil-water retention data // Soil Sci. 1997. V. 162. P. 703–12. https://doi.org/10.1097/00010694-199710000-00003

  29. van Genuchten M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils // Soil Sci. Soc. 1980. V. 44 (5). P. 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

  30. Williams J., Ross P., Bristow K. Prediction of the Campbell water retention function from texture, structure, and organic matter / Eds M.Th. van Genuchten et al. // Proc. Int. Workshop on Indirect methods for Estimating the Hydraulic Properties of Unsaturated Soils. Riverside: Univ. California, 1992. P. 427–442.

  31. Wösten J.H.M., Lilly A., Nemes A., Bas C Le. Development and use of a database of hydraulic properties of European soils // Geoderma. 1999. V. 90. I. 3–4. P. 169–185. ISSN 0016-7061. https://doi.org/10.1016/S0016-7061(98)00132-3

  32. Wösten J.H.M., Pachepsky Y.A., Rawls W.J. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics // J. Hydrol. 2001. V. 251. P. 123–150. https://doi.org/10.1016/S0022-1694(01)00464-4

Дополнительные материалы отсутствуют.